
Go Beyond VFP's SQL with SQL
Server

Tamar E. Granor
Tomorrow's Solutions, LLC

Voice: 215-635-1958
Email: tamar@tomorrowssolutionsllc.com

The subset of SQL in Visual FoxPro is useful for many tasks. But there's much more to SQL
than what VFP supports. Those additions make it easy to do a number of tasks that are
difficult in VFP.

In this session, we'll solve some common problems, using SQL elements that are supported by
SQL Server, but not by VFP. Among the problems we'll explore are combining a set of values
contained in multiple records into a delimited list in a single record, working with
hierarchical data like corporate organization charts, finding the top N records for each group
in a result, and including summary records in grouped data.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 2 of 51

Introduction
When FoxPro 2.0 was released nearly 25 years ago, it included some SQL commands. I fell
in love as soon as I started playing with them. Over the years, Visual FoxPro’s SQL subset
has grown, but there are still some tasks that are hard or impossible to do with SQL alone
in VFP, but a lot easier in other SQL dialects. In this session, I’ll take a look at some of these
tasks, showing you how VFP requires a blend of SQL and Xbase code, but SQL Server allows
them to be done with SQL code only.

You’re unlikely to be choosing whether to store your data in VFP or in SQL Server based on
which one makes these tasks easier. However, when you switch from working with VFP
databases to working with SQL Server databases, it’s easy to just keep doing things the way
you have been. The goal of this session is to show you how you can code better in SQL
Server by learning some new approaches.

The VFP examples in this session use the example Northwind database. Most of the SQL
examples in this session use the example AdventureWorks 2008 database, which you can
download from http://tinyurl.com/cp2fv8w. One group of examples uses the
AdventureWorks 2005 database, because the 2008 version no longer includes the structure
being discussed; you can download AdventureWorks 2005 from
http://tinyurl.com/y943xr9.

Consolidate data from a field into a list
One of the most common questions I see in online VFP forums is how to group data,
consolidating the data from a particular field. If the consolidation you want is counting,
summing, or averaging, the task is simple; just use GROUP BY with the corresponding
aggregate function.

But if you want to create a comma-separated list of all the values or something like that,
there’s no SQL-only way to do it in VFP. SQL Server, however, provides not one, but two,
ways.

The VFP way

Using the Northwind database that comes with VFP, suppose you want (say, for reporting
purposes) to have a list of orders, with a comma-separated list of the products included in
each order, something like what you see in Figure 1.

http://tinyurl.com/cp2fv8w
http://tinyurl.com/y943xr9

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 3 of 51

Figure 1. This cursor includes each order from the Northwind database with a comma-separated list of the
products ordered.

VFP’s SQL commands offer no way to combine the products like that. Instead, you have to
run a query to collect the raw data and then use a loop to combine the products for each
order. Listing 1 shows the code used to produce the cursor for the figure. (Like all the VFP
examples in this paper, this one assumes you’ve already opened the Northwind database.)

Listing 1. To consolidate data into a comma-separated list in VFP requires a combination of SQL and Xbase
code.

SELECT DISTINCT Orders.OrderID, Products.ProductName ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 JOIN Products ;
 ON OrderDetails.ProductID = Products.ProductID ;
 ORDER BY Orders.OrderID, ProductName ;
 INTO CURSOR csrOrderProducts

LOCAL cProducts, cCurOrderID
CREATE CURSOR csrOrderProductList (iOrderID I, cProducts C(150))

SELECT csrOrderProducts
cCurOrderID = csrOrderProducts.OrderID
cProducts = ''

SCAN
 IF csrOrderProducts.OrderID <> m.cCurOrderID
 * Finished this order
 INSERT INTO csrOrderProductList ;
 VALUES (m.cCurOrderID, SUBSTR(m.cProducts, 3))
 cProducts = ''
 cCurOrderID = csrOrderProducts.OrderID
 ENDIF

 cProducts = m.cProducts + ', ' + ALLTRIM(csrOrderProducts.ProductName)
ENDSCAN

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 4 of 51

The query uses DISTINCT because we only want to include each product in the list once for
each order. It also sorts the results by OrderID, which is necessary for the SCAN loop, and
then by name within the order, so the result has the products in alphabetical order.

The SCAN loop builds up the list of products for a single order and then when we reach a
new order, adds a record to the result cursor and clears the cProducts variable, so we can
start over for the new order.

The code in Listing 1 is included in the materials for this session as
VFPProductsByOrder.PRG

The SQL way

SQL Server offers two ways to solve this problem. Each approach teaches something about
elements of SQL Server that don’t exist in VFP’s SQL, so we’ll look at both.

Using the AdventureWorks 2008 database, to get an example analogous to the VFP
example, we can join the PurchaseOrderDetail table to the Product table to get a list of the
products included in each purchase order, as in Listing 2.

Listing 2. This query, based on the AdventureWorks 2008 database, produces a list of products for each
purchase order.

SELECT PurchaseOrderID, Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 On Production.Product.ProductID = PurchaseOrderDetail.ProductID
 ORDER BY PurchaseOrderID

We’ll use this query as a basis for getting one record per purchase order with the list of
products comma-separated.

FOR XML

The first approach uses the FOR XML clause. In general, this clause allows you to convert
SQL results to XML. There are four variations of FOR XML; three of them produce XML
results and vary only in how much control you have over the format of the result. For
example, if you add the clause FOR XML AUTO at the end of the query in Listing 2, you get
results like those in Listing 3.

Listing 3. Adding FOR XML AUTO to the query in Listing 2 produces this XML. (Only a few records are
shown.)

 <Production.Product Name="Adjustable Race" />

 <Production.Product Name="Thin-Jam Hex Nut 9" />
 <Production.Product Name="Thin-Jam Hex Nut 10" />

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 5 of 51

 <Production.Product Name="Seat Post" />

 <Production.Product Name="Headset Ball Bearings" />

Using FOR XML RAW, instead, produces one element of type <row> for each record, with
each field included as an attribute. Listing 4 shows the first few records of the result.

Listing 4. FOR XML RAW produces simpler XML.

<row PurchaseOrderID="1" Name="Adjustable Race" />
<row PurchaseOrderID="2" Name="Thin-Jam Hex Nut 9" />
<row PurchaseOrderID="2" Name="Thin-Jam Hex Nut 10" />
<row PurchaseOrderID="3" Name="Seat Post" />

A third version, FOR XML EXPLICIT, gives you tremendous control over the format of the
output, at the cost of writing a more complex query. The details are beyond the scope of
this session, and the documentation indicates that you can do the same things using FOR
XML PATH much more easily. However, if you’re interested, see
http://technet.microsoft.com/en-us/library/ms189068.aspx.

The fourth version of FOR XML, using the PATH keyword, provides what we need to
consolidate the product data into a single record. FOR XML PATH treats columns as XPath
expressions. XPath, which stands for XML Path language, lets you select items in an XML
document. Again, the full details are beyond the scope of this article.

What you need to know to solve the problem of creating a comma-separated list is that if
you specify FOR XML PATH(''), the expression you specify in the query is consolidated into
a single list, rather than one record per value. For example, the query in Listing 5 produces
the results shown in Listing 6.

Listing 5. Use FOR XML PATH('') to combine data into a single string.

SELECT ', ' + Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 7
 ORDER BY Name
 FOR XML PATH('')

Listing 6. The query in Listing 5 produces a single string.

, HL Crankarm, LL Crankarm, ML Crankarm

The query here assembles the list for a single purchase order, due to the WHERE clause.
The ORDER BY clause makes sure the products are listed in alphabetical order.

http://technet.microsoft.com/en-us/library/ms189068.aspx

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 6 of 51

The field list in this case must either be an expression, as in the example, or must include
the clause: AS "Data()". Otherwise, you get XML rather than a simple list. Since you’ll
usually want some punctuation between items, this isn’t a particularly onerous restriction.

However, the query in Listing 5 doesn’t deal with duplicate products in a single order. To
demonstrate, specify 4008 as the purchase order ID to match rather than 7 (because order
4008 has a couple of duplicate products). When you do so, you get the result shown in
Listing 7. (I’ve added line breaks to make it more readable; the actual result is one long
string with no breaks. Note also that the product names include commas, so it might
actually be better to separate the items with something else, perhaps semi-colons.)

Listing 7. The query in Listing 5 doesn’t remove duplicates.

, Classic Vest, L, Classic Vest, L, Classic Vest, M, Classic Vest, M,
Classic Vest, M, Classic Vest, S, Full-Finger Gloves, L, Full-Finger Gloves, M,
Full-Finger Gloves, S, Half-Finger Gloves, L, Half-Finger Gloves, M,
Half-Finger Gloves, S, Women's Mountain Shorts, L, Women's Mountain Shorts, M,
Women's Mountain Shorts, S

To remove the duplicates, we need to use a derived table within this query, as in Listing 8.
The derived table extracts the list of distinct product names for the purchase order and
then the main query can sort them. I use the derived table because using requires the
field(s) listed in the ORDER BY clause to be included in the SELECT list; in this case, we’re
sorting by Name, but the SELECT list includes only the expression (', ' + Name). (You could
in fact, do this without the derived table by using ", " + Name in the ORDER BY clause, but I
think the derived table version is more readable.)

Listing 8. To have only distinct product names and be able to sort them requires a derived table.

SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 4008) DistNames
 ORDER BY Name
 FOR XML PATH('')

Listing 9 shows the results of the query in Listing 8. As before, they’ve been reformatted
for readability.

Listing 9. With the more complex query in Listing 8, the results don’t include duplicates.

, Classic Vest, L, Classic Vest, M, Classic Vest, S, Full-Finger Gloves, L,
Full-Finger Gloves, M, Full-Finger Gloves, S, Half-Finger Gloves, L,
Half-Finger Gloves, M, Half-Finger Gloves, S, Women's Mountain Shorts, L,
Women's Mountain Shorts, M, Women's Mountain Shorts, S

The next issue is the leading comma in the result. To remove it, we use the STUFF()
function , which is identical to the VFP STUFF() function. It replaces part of a string with

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 7 of 51

another string. In this case, we want to replace the first two characters with the empty
string.

However, you don’t put the STUFF() function quite where you might expect. It has to wrap
the entire query that produces the list. Listing 10 shows the query that produces the list
without the leading comma. Note that the query inside STUFF() has to be wrapped with
parentheses, just like a derived table. (The opening parenthesis is before the keyword
SELECT, while the closing parenthesis follows the XML PATH('') clause. That’s followed by
the additional parameters for STUFF().) Here, though, the subquery isn’t a derived table;
it’s a computed field.

Listing 10. To remove the leading comma on the list, we wrap the whole query with STUFF().

SELECT STUFF((SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 7) DistNames
 ORDER BY Name
 FOR XML PATH('')), 1, 2, '')

We now have all the pieces we need to produce results analogous to those in Figure 1. In
the outer query, we simply need to include the purchase order’s ID. Listing 11 shows the
query and Figure 2 shows part of the result, as displayed in SQL Server Management
Studio (SSMS).

Listing 11. Combining the query from Listing 10 with code to include the purchase order number gives us
the desired results.

SELECT PurchaseOrderID,
 STUFF((SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE Purchasing.PurchaseOrderDetail.PurchaseOrderID = A.PurchaseOrderID) DistName
 ORDER BY Name
 FOR XML PATH('')), 1, 2, '') OrderProducts
 FROM Purchasing.PurchaseOrderDetail
 GROUP BY PurchaseOrderID
 ORDER BY 1

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 8 of 51

Figure 2. The query in Listing 11 produces this result.

This solution is included in the materials for this session as RollupOrdersForXML.sql.

Using a function

The second approach to producing the desired list uses a function that consolidates the list
of products. The downside of this approach is that you either have to have the function in
the database, or create it on the fly and then drop it afterward. If you need the comma-
separated list of products regularly, of course, there’s really no reason not to add the
function to the database.

The secret here is that the function accumulates the list in a variable, which it then returns
to the main query. VFP doesn’t allow you to store query results to a variable, but SQL
Server does, using the syntax in Listing 12. You can even assign results to multiple
variables in a single query. The variables must be declared before the query.

Listing 12. SQL Server lets you store a query result into a variable.

SELECT @VarName = <expression>
 FROM <rest of query>

To create the comma-separated list, the expression on the right-hand side of the equal sign
references the variable on the left-hand side. The code in Listing 13 shows how to do this
for a single purchase order. To display the results in SSMS, add SELECT @Products at the
end of the code block.

Listing 13. The ability to store a query result in a variable provides a way to accumulate the list of products
for a single purchase order.

DECLARE @Products VARCHAR(1000)

SELECT @Products = COALESCE(@Products + ',', '') + Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 7
 ORDER BY Name

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 9 of 51

The COALESCE() function accepts a list of expressions and returns the first one with a non-
null value. Since @Products is initially null (because it’s not given an initial value), on the
first record, COALESCE() chooses the empty string and the result doesn’t have a leading
comma.

As in the FOR XML PATH case, the query here doesn’t remove duplicates. The solution is
the same here; use a derived query to produce the list of distinct products before
combining them. (In this case, you need the derived table; there’s not a way to collect
distinct product names without it.) Listing 14 shows the code that produces a sorted list of
distinct products for one purchase order.

Listing 14. To include each product only once in the list, we again use a derived query inside the query that
assembles the comma-separated list.

DECLARE @Products VARCHAR(1000)

SELECT @Products = COALESCE(@Products + ',', '') + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 4008) DistNames
 ORDER BY Name

We can use this code in a function to return the rolled-up list for a single purchase order.
The main query calls the function for each purchase order. Listing 15 shows the full code
for this solution. Note that it creates the function, uses it and then drops it. As noted earlier,
if you’re going to do this regularly, just create the function once and keep it.

Listing 15. This solution to getting a comma-separated list of values from multiple records uses a function
that rolls up the products for a single order.

CREATE FUNCTION ProductList (@POId INT)
 RETURNS VARCHAR(1000)
 AS
BEGIN
 DECLARE @Products VARCHAR(1000)

 SELECT @Products = COALESCE(@Products + ',', '') + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = @POId) DistNames
 ORDER BY Name

RETURN @Products
END
go

SELECT DISTINCT PurchaseOrderID, dbo.productList(PurchaseOrderID)
 AS ProductList

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 10 of 51

 FROM Purchasing.PurchaseOrderDetail
go

DROP FUNCTION dbo.ProductList
GO

Using DISTINCT in the main query ensures that we see each purchase order only once;
otherwise, each would appear once for each included product.

This solution is included in the materials for this session as RollupOrdersByFunction.sql.

Which one?

Given two solutions, which one should you use? In my tests, the FOR XML PATH solution
seems to be faster. However, the dataset in AdventureWorks is fairly small, so may not
provide a good test bed. I recommend testing both solutions against your actual data.

If you find no significant difference in execution, then use the one that you find easier to
read and comprehend, since you’re likely to have to revisit it at some point.

Handle self-referential hierarchies
Relational databases handle typical hierarchical relationships very well. When you have
something like customers, who place orders, which contain line items, representing
products sold, any relational database should do. You create one table for each type of
object and link them together with foreign keys.

Reporting on such data is easy, too. Fairly simple SQL queries let you collect the data you
want with a few joins and some filters.

But some types of data don’t lend themselves to this sort of model. For example, the
organization chart for a company contains only people, with some people managed by
other people, who might in turn be managed by other people. Clearly, records for all people
should be contained in a single table.

But how do you represent the manager relationship? One commonly used approach is to
add a field to the person’s record that points to the record (in the same table) for his or her
manager.

From a data-modeling point of view, this is a simple solution. However, reporting on such
data can be complex. How do you trace the hierarchy from a given employee through her
manager to the manager’s manager and so on up the chain of command? Given a manager,
how do you find everyone who ultimately reports to that person (that is, reports to the
person directly, or to someone managed by that person, or to someone managed by
someone who is managed by that person, and so on down the line)?

Well look at two approaches to dealing with this kind of data, and show how much easier it
is to get what you want in SQL Server than in VFP.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 11 of 51

The traditional solution

As described above, the traditional way to handle this type of hierarchy is to add a field to
identify a record’s parent (such as an employee’s manager). For example, the Northwind
database has a field in the Employees table called ReportsTo. It contains the primary key of
the employee’s manager; since that’s also a record in Employees, the table is self-
referential.

The AdventureWorks 2008 sample database for SQL Server doesn’t have this kind of
relationship because it uses the second approach to hierarchies, discussed in “Using the
HierarchyID type,” later in this paper. However, the 2005 version of the database has a set-
up quite similar to the one in Northwind. The Employee table has a ManagerID field that
contains the primary key (in Employee) of the employee’s manager.

Using the VFP Northwind and SQL Server AdventureWorks 2005 databases, let’s try to
answer some standard questions about an organization chart.

Who manages an employee?

In both cases, determining the manager of an individual employee is quite simple. It just
requires a self-join of the Employee table. That is, you use two instances of the Employee
table, one to get the employee and one to get the manager. Listing 16 (EmpPlusMgr.PRG in
the materials for this session) shows the VFP version of the query that retrieves this data
for a single employee (by specifying the employee’s primary key; 4, in this case).

Listing 16. Use a self-join to connect an employee with his or her manager.

SELECT Emp.FirstName AS EmpFirst, ;
 Emp.LastName AS EmpLast, ;
 Mgr.FirstName AS MgrFirst, ;
 Mgr.LastName AS MgrLast ;
 FROM Employees Emp ;
 JOIN Employees Mgr ;
 ON Emp.ReportsTo = Mgr.EmployeeID ;
 WHERE Emp.EmployeeID = 4 ;
 INTO CURSOR csrEmpAndMgr

The AdventureWorks version of the same task is a little more complex, because the
database has a separate table for people (called Contact). The Employee table uses a
foreign key to Contact to identify the individual; Employee contains only the data related to
employment. So extracting an employee’s name requires joining Employee to Contact.

The solution still uses a self-join on the Employee table, but now it also requires two
instances of the Contact table. Listing 17 (EmpPlusMgr.SQL in the materials for this
session) shows the SQL Server query to retrieve the employee’s name and his or her
manager’s name. Again, we retrieve data for a single employee (by specifying
EmployeeID=37).

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 12 of 51

Listing 17. The SQL Server version of the query is a little more complex, due to additional normalization, but
still uses a self-join.

SELECT EmpContact.FirstName AS EmpFirst,
 EmpContact.LastName AS EmpLast,
 MgrContact.FirstName AS MgrFirst,
 MgrContact.LastName AS MgrLast
 FROM Person.Contact EmpContact
 JOIN HumanResources.Employee Emp
 ON Emp.ContactID = EmpContact.ContactID
 JOIN HumanResources.Employee Mgr
 ON Emp.ManagerID = Mgr.EmployeeID
 JOIN Person.Contact MgrContact
 ON Mgr.ContactID = MgrContact.ContactID
 WHERE Emp.EmployeeID = 37

It’s easy to extend these queries to retrieve the names of all employees with each one’s
manager. Just remove the WHERE clause from each query.

What’s the management hierarchy for an employee?

Things start to get more interesting when you want to trace the whole management
hierarchy for an employee. That is, given a particular employee, retrieve the name of her
manager and of the manager’s manager and of the manager’s manager’s manager and so on
up the line until you reach the person in charge.

Since we don’t know how many levels we might have, rather than putting all the data into a
single record, here we create a cursor with one record for each level. The specified
employee comes first, and then we climb the hierarchy so that the big boss is last.

VFP’s SQL alone doesn’t offer a solution for this problem. Instead, you need to combine a
little bit of SQL with some Xbase code, as in Listing 18. (This program is included in the
materials for this session as EmpHierarchy.PRG.)

Listing 18. To track a hierarchy to the top in VFP calls for a mix of SQL and Xbase code.

* Start with a single employee and create a
* hierarchy up to the top dog.
LPARAMETERS iEmpID

LOCAL iCurrentID , iLevel

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR EmpHierarchy ;
 (cFirst C(15), cLast C(20) , iLevel I)

USE Employees IN 0 ORDER EmployeeID

iCurrentID = iEmpID
iLevel = 1

DO WHILE NOT EMPTY(iCurrentID)

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 13 of 51

 SEEK iCurrentID IN Employees

 INSERT INTO EmpHierarchy ;
 VALUES (Employees.FirstName, ;
 Employees.LastName, ;
 m.iLevel)

 iCurrentID = Employees.ReportsTo
 iLevel = m.iLevel + 1
ENDDO

USE IN Employees
SELECT EmpHierarchy

The strategy is to start with the employee you’re interested in, insert her data into the
result cursor, then grab the PK for her manager and repeat until you reach an employee
whose manager field is empty. Figure 3 shows the results when you pass 7 as the
parameter.

Figure 3. Running the query in Listing 18, passing 7 as the parameter, gives these results.

SQL Server provides a simpler solution, by using a Common Table Expression (CTE). A CTE
is a query that precedes the main query and provides a result that is then used in the main
query. While similar to a derived table, CTEs have a couple of advantages.

First, the result can be included multiple times in the main query (with different aliases). A
derived table is created in the FROM clause; if you need the same result again, you have to
include the whole definition for the derived table again.

Second, and relevant to this problem, a CTE can have a recursive definition, referencing
itself. That allows it to walk a hierarchy.

Listing 19 shows the structure of a query that uses a CTE. (It’s worth noting that a single
query can have multiple CTEs; just separate them with commas.)

Listing 19. The definition for a CTE precedes the query that uses it.

WITH CTEAlias(Field1, Field2, ...)
AS
(

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 14 of 51

 SELECT <fieldlist>
 FROM <tables>
 ...
)
SELECT <main fieldlist>
 FROM <main query tables>
 ...

The query inside the parentheses is the CTE; its alias is whatever you specify in the WITH
line. The WITH line also must contain a list of the fields in the CTE, though you don’t
indicate their types or sizes.

The main query follows the parentheses and presumably includes the CTE in its list of
tables and some of the CTE’s fields in the field list or the WHERE clause.

For example, the query in Listing 8 could instead use a CTE as in Listing 20, which is
included in the materials for this session as SimpleCTE.SQL.

Listing 20. You can usually replace a derived table with a CTE.

WITH DistNames (Name) AS
(SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail As A
 On Production.Product.ProductID = A.ProductID
 WHERE A.PurchaseOrderID = 4008)

SELECT ', ' + Name
 FROM DistNames
 ORDER BY Name
 FOR XML PATH('')

For a recursive CTE, you combine two queries with UNION ALL. The first query is an
"anchor"; it provides the starting record or records. The second query references the CTE
itself to drill down recursively.

A recursive CTE continues drilling down until the recursive portion returns no records.

Listing 21 shows a query that produces the management hierarchy for the employee
whose EmployeeID is 37. (Just change the assignment to @iEmpID to specify a different
employee.) The query is included in the materials for this session as
EmpHierarchyViaCTE.SQL.

Listing 21. To retrieve the management hierarchy for an employee in the SQL Server AdventureWorks 2005
database, use a Common Table Expression.

DECLARE @iEmpID INT = 37;

WITH EmpHierarchy (
 FirstName, LastName, ManagerID, EmpLevel)
AS
(

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 15 of 51

SELECT Contact.FirstName, Contact.LastName,
 Employee.ManagerID, 1 AS EmpLevel
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID =
 Contact.ContactID
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Contact.FirstName, Contact.LastName,
 Employee.ManagerID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID = Contact.ContactID
 JOIN EmpHierarchy
 ON Employee.EmployeeID = EmpHierarchy.ManagerID
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy

The alias for the CTE here is EmpHierarchy. The anchor portion of the CTE selects the
specified person (WHERE EmployeeID = @iEmpID), including that person’s ManagerID in
the result and setting up a field to track the level in the database.

The recursive portion of the query joins the Employee table to the EmpHierarchy table-in-
progress (that is, the CTE itself), matching the ManagerID from EmpHierarchy to
Employee.EmployeeID. It also increments the EmpLevel field, so that the first time it
executes, EmpLevel is 2, the second time, it’s 3, and so forth.

Once the CTE is complete, the main query pulls the desired information from it. Figure 4
shows the result of the query in Listing 21.

Figure 4. The query in Listing 21 returns one record for each level of the management hierarchy for the
specified employee.

Who does an employee manage?

The problem gets a little tougher, at least on the VFP side, when we want to put together a
list of all employees a particular person manages at all levels of the hierarchy. That is, not
only those she manages directly, but people who report to those people, and so on down
the line.

To make the results more meaningful, we want to include the name of the employee’s
direct manager in the results.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 16 of 51

What makes this difficult in VFP is that at each level, we may (probably do) have multiple
employees. We need not only to add each to the result, but to check who each of them
manages. That means we need some way of keeping track of who we’ve checked and who
we haven’t.

We use two cursors. One (MgrHierarchy) holds the results, while the other
(EmpsToProcess) holds the list of people to check. Listing 22 shows the code; it’s called
MgrHierarchy.PRG in the materials for this session.

Listing 22. Putting together the list of people a specified person manages directly or indirectly is harder than
climbing up the hierarchy.

* Start with a single employee and determine
* all the people that employee manages,
* directly or indirectly.
LPARAMETERS iEmpID

LOCAL iCurrentID, iLevel, cFirst, cLast,
LOCAL nCurRecNo, cMgrFirst, cMgrLast

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR MgrHierarchy ;
 (cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15))
CREATE CURSOR EmpsToProcess ;
 (EmployeeID I, cFirst C(15), cLast C(20), ;
 iLevel I, cMgrFirst C(15), cMgrLast C(15))

INSERT INTO EmpsToProcess ;
 SELECT m.iEmpID, FirstName, LastName, 1, "", "" ;
 FROM Employees ;
 WHERE EmployeeID = m.iEmpID

SELECT EmpsToProcess

SCAN
 iCurrentID = EmpsToProcess.EmployeeID
 iLevel = EmpsToProcess.iLevel
 cFirst = EmpsToProcess.cFirst
 cLast = EmpsToProcess.cLast
 cMgrFirst = EmpsToProcess.cMgrFirst
 cMgrLast = EmpsToProcess.cMgrLast

 * Insert this records into result
 INSERT INTO MgrHierarchy ;
 VALUES (m.cFirst, m.cLast, m.iLevel, m.cMgrFirst, m.cMgrLast)

 * Grab the current record pointer
 nCurRecNo = RECNO("EmpsToProcess")

 INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, m.iLevel + 1, m.cFirst, m.cLast ;

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 17 of 51

 FROM Employees ;
 WHERE ReportsTo = m.iCurrentID

 * Restore record pointer
 GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

To kick the process off, we add a single record to EmpsToProcess, with information about
the specified employee. Then, we loop through EmpsToProcess, handling one employee at
a time. We insert a record into MgrHierarchy for that employee, and then we add records to
EmpsToProcess for everyone directly managed by the employee we’re now processing.

The most interesting bit of this code is that the SCAN loop has no problem with the cursor
we’re scanning growing as we go. We just have to keep track of the record pointer, and
after adding records, move it back to the record we’re currently processing.

Figure 5 shows the result cursor when you pass 2 as the employee ID.

Figure 5. When you specify an EmployeeID of 2, you get all the Northwind employees.

In fact, you can do this with a single cursor that represents both the results and the list of
people yet to check, but doing so makes the code a little confusing.

In SQL Server, solving this problem is no harder than solving the upward hierarchy. Again,
we use a CTE, and all that really changes is the join condition in the recursive part of the
CTE. (Because we want the direct manager’s name, the field list is slightly different, as
well). Listing 23 shows the query (MgrHierarchyViaCTE.SQL in the materials for this
session), along with a variable declaration to indicate which employee we want to start
with; Figure 6 shows the results for this example.

Listing 23. Walking down the hierarchy of employees is no harder in SQL Server than climbing up.

DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
 (FirstName, LastName, EmployeeID, EmpLevel, MgrFirst, MgrLast)
AS
(

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 18 of 51

SELECT Contact.FirstName, Contact.LastName,
 Employee.EmployeeID, 1 AS EmpLevel,
 CAST('' AS NVARCHAR(50)) AS MgrFirst
 CAST('' AS NVARCHAR(50)) AS MgrLast
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID = Contact.ContactID
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Contact.FirstName, Contact.LastName,
 Employee.EmployeeID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID = Contact.ContactID
 JOIN EmpHierarchy
 ON Employee.ManagerID = EmpHierarchy.EmployeeID
)

SELECT FirstName, LastName, EmpLevel,
 MgrFirst, MgrLast
 FROM EmpHierarchy

Figure 6. These are the people managed by Roberto Tamburello, whose EmployeeID is 3.

Using the HierarchyID type

SQL Server 2008 introduced a new way to handle this kind of hierarchy. A new data type
called HierarchyID encodes the path to any node in a hierarchy into a single field; a set of
methods for the data type make both maintaining and navigating straightforward. (The
idea of a data type with methods is unusual. Think of the data type as essentially a class
that you can use as a field.)

The SQL Server 2008 version of AdventureWorks uses the HierarchyID type to handle the
management hierarchy (which is why we couldn’t use it for the earlier examples). There
are other changes, as well. AdventureWorks 2008 is even more normalized than the 2005

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 19 of 51

version; a new BusinessEntity table contains information about people (including
employees) and businesses. So, instead of an EmployeeID, each employee now has a
BusinessEntityID. In addition, the Contact table has been renamed Person. However,
there’s still a relationship between that table and the Employee table that we can use to
retrieve an employee’s name.

HierarchyID essentially creates a string that shows the path from the root (top) of the
hierarchy to a particular record. The root node is indicated as "/"; then, at each level, a
number indicates which child of the preceding node is in this node’s hierarchy. So, for
example, a hierachyID of "/4/3/" means that the node is descended from the fourth child of
the root node, and is the third child of that child. However, HierarchyIDs are actually stored
in a binary string created from the plain text version.

The HierarchyID type has a set of methods that allow you to easily navigate the hierarchy.
First, the ToString method converts the encoded hierarchy ID to a string in the form shown
above. Listing 24 (ShowHierarchyID.SQL in the materials for this session) shows a query
to extract the name and hierarchy ID, both in encoded and plain text form, of the
AdventureWorks employees; Figure 7 shows a portion of the result.

Listing 24.The ToString method of the HierarchyID type converts the hierarchy ID into a human-readable
form.

SELECT Person.[BusinessEntityID]
 ,[OrganizationNode]
 ,[OrganizationNode].ToString()
 ,[OrganizationLevel]
 , FirstName
 , LastName
 FROM [HumanResources].[Employee]
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID

Figure 7. The unnamed column here shows the text version of the OrganizationNode column.

To move through the hierarchy, we use the GetAncestor method. As you’d expect,
GetAncestor returns an ancestor of the node you apply it to. A parameter indicates how
many levels up the hierarchy to go, so GetAncestor(1) returns the parent of the node.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 20 of 51

That’s actually all we need to retrieve the management hierarchy for a particular employee.
As in the earlier example, we use a CTE to handle the recursive requirement. Listing 25
shows the query; it’s included in the materials for this session as
EmpHierarchyWithHierarchyID.SQL.

Listing 25. Retrieving the management hierarchy for a given employee when using the HierarchyID data type
isn’t much different from doing it with a "reports to" field.

DECLARE @iEmpID INT = 40;

WITH EmpHierarchy (FirstName, LastName, OrganizationNode, EmpLevel)
AS
(
SELECT Person.FirstName, Person.LastName,
 Employee.OrganizationNode, 1 AS EmpLevel
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
 Employee.OrganizationNode, EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 JOIN EmpHierarchy
 ON Employee.OrganizationNode = EmpHierarchy.OrganizationNode.GetAncestor(1)
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy

The big difference between this query and the earlier query is in the join between
Employee and EmpHierarchy. Rather than matching fields directly, we call GetAncestor to
retrieve the hierarchy for a node’s parent and compare that to the Employee table’s
OrganizationNode field.

As in the earlier examples, finding everyone an employee manages uses a very similar
query, but in the join condition between Employee and EmpHierarchy, we apply
GetAncestor to the field from Employee. Listing 26 (MgrHierarchyWithHierarchyID.SQL in
the materials for this session) shows the code.

Listing 26. To find everyone an individual manages using HierarchyID, just change the direction of the join
between Employee and EmpHierarchy.

DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
 (FirstName, LastName, BusinessEntityID,
 EmpLevel, MgrFirst, MgrLast, OrgNode)
AS
(

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 21 of 51

SELECT Person.FirstName, Person.LastName,
 Employee.BusinessEntityID, 1 AS EmpLevel,
 CAST('' AS NVARCHAR(50)) AS MgrFirst,
 CAST('' AS NVARCHAR(50)) AS MgrLast,
 OrganizationNode AS OrgNode
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
 Employee.BusinessEntityID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast,
 OrganizationNode AS OrgNode
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 JOIN EmpHierarchy
 ON Employee.OrganizationNode.GetAncestor(1) = EmpHierarchy.OrgNode
)

SELECT FirstName, LastName, EmpLevel, MgrFirst, MgrLast
 FROM EmpHierarchy

Setting up HierarchyIDs

Populating a HierarchyID field turns out to be simple. You can specify the plain text version
and SQL Server will handle encoding it. You can also use the GetRoot and GetDescendant
methods to populate the field.

GetDescendant is particularly useful for inserting a child of an existing record. You call the
GetDescendant method of the parent record, passing parameters that indicate where the
new record goes among the children of the parent. A complete explanation of the method is
beyond the scope of this article, but Listing 27 shows code that creates a temporary table
and adds a few records, and then shows the results. This code is included in the materials
for this session as CreateHierarchy.SQL.

Listing 27. You can specify the hierarchyID value directly or use the GetRoot and GetDescendant methods.

CREATE TABLE #temp
 (orgHier HIERARCHYID, NodeName CHAR(20))

INSERT INTO #temp
 (orgHier, NodeName)
VALUES ('/', 'Root'))

DECLARE @Root HIERARCHYID,
 @curNode HIERARCHYID
SELECT @Root = hierarchyID::GetRoot()

INSERT INTO #temp

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 22 of 51

 (orgHier, NodeName)
VALUES (@Root.GetDescendant(NULL, NULL),
 'First child')

SELECT @curNode = MAX(orgHier)
 FROM #temp
 WHERE orgHier.GetAncestor(1) = @Root

INSERT INTO #temp
 (orgHier, NodeName)
VALUES (@curNode.GetDescendant(NULL, NULL),
 'First grandchild')

INSERT INTO #temp
 (orgHier, NodeName)
VALUES (@Root.GetDescendant(@curNode, NULL),
 'Second child')

SELECT orgHier, orgHier.ToString(),
 NodeName
 FROM #temp

DROP TABLE #temp

You’ll find a good tutorial on the HierarchyID type, including a discussion of the methods, at
http://tinyurl.com/n6kk6jm.

What about VFP?

Obviously, VFP has no analogue of the HierarchyID data type. However, you can create your
own. Marcia Akins describes an approach to doing so in her paper "Modeling Hierachies,"
available at http://tightlinecomputers.com/Downloads.htm; scroll down near the bottom
of the page.

Of course, a home-grown version won’t include the methods that SQL Server’s HierarchyID
type comes with. You’ll have to write your own code to handle look-ups and insertions.

Get the top N from each group
Both VFP and SQL Server include the TOP n clause, which allows you to include in the
result only the first n records that match a query’s filter conditions. But TOP n doesn’t work
when what you really want is the TOP n for each group in the query.

Suppose a company wants to know its top five salespeople for each year in some period. In
VFP, you need to combine SQL with Xbase code or use a trick to get the desired results.
With SQL Server, you can do it with a single query.

The VFP solution

Collecting the basic data you need to solve this problem is straightforward. Listing 28
(EmployeeSalesByYear.PRG in the materials for this session) shows a query that provides
each employee’s sales by year; Figure 8 shows part of the results.

http://tinyurl.com/n6kk6jm
http://tightlinecomputers.com/Downloads.htm

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 23 of 51

Listing 28. Getting total sales by employee by year is easy in VFP.

SELECT FirstName, LastName, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Employees ;
 JOIN Orders ;
 ON Employees.EmployeeID = Orders.EmployeeID ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrEmployeeSalesByYear

Figure 8. The query in Listing 28 produces the total sales for each employee by year.

However, when you want to keep only the top five for each year, you need to either
combine SQL code with some Xbase code or use a trick that can result in a significant
slowdown with large datasets.

SQL plus Xbase

The mixed solution is easier to follow, so let’s start with that one. The idea is to first select
the raw data needed, in this case, the total sales by employee by year. Then we loop
through on the grouping field, and select the top n (five, in this case) in each group and put
them into a cursor. Listing 29 (TopnEmployeeSalesByYear-Loop.PRG in the materials for
this session) shows the code; Figure 9 shows the result.

Listing 29. One way to find the top n in each group is to collect the data, then loop through it by group.

SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 24 of 51

SELECT distinct OrderYear ;
 FROM csrEmpSalesByYear ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 ;
 FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN csrEmpSalesByYear ;
 ON Employees.EmployeeID = csrEmpSalesByYear.EmployeeID ;
 WHERE csrEmpSalesByYear.OrderYear = m.nYear ;
 ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
USE IN csrEmpSalesByYear
SELECT csrTopEmployeeSalesByYear

Figure 9. The query in Listing 29 produces these results.

The first query is just a simpler version of Listing 28, omitting the Employees table and the
ORDER BY clause; both of those will be used later. Next, we create a cursor to hold the final
results. Then, we get a list of the years for which we have data. Finally, we loop through the
cursor of years and, for each, grab the top five salespeople for that year, and put them into
the result cursor, adding the employee’s name and sorting as we insert.

You can actually consolidate this version a little by turning the first query into a derived
table in the query inside the INSERT command. Listing 30 (TopnEmployeeSalesByYear-
Loop2.PRG in the materials for this session) shows the revised version. Note that you have

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 25 of 51

to get the list of years directly from the Orders table in this version. This version, of course,
gives the same results.

Listing 30. The code in Listing 29 can be reworked to use a derived table to compute the totals for each
year.

CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

SELECT distinct YEAR(OrderDate) AS OrderYear ;
 FROM Orders ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 ;
 FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice * Quantity) ;
 AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 WHERE YEAR(OrderDate) = m.nYear ;
 GROUP BY 1, 2) csrEmpSalesByYear ;
 ON Employees.EmployeeID = csrEmpSalesByYear.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
SELECT csrTopEmployeeSalesByYear

SQL-only

The alternative VFP solution uses only SQL commands, but relies on a trick of sorts. Like
the mixed solution, it starts with a query to collect the basic data needed. It then joins that
data to itself in a way that results in multiple records for each employee/year combination
and uses HAVING to keep only those that represent the top n records. Finally, it adds the
employee name. Listing 31 (TopNEmployeeSalesByYear-Trick.prg in the materials for this
session) shows the code.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 26 of 51

Listing 31. This solution uses only SQL, but requires a tricky join condition.

SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice * Quantity) ;
 AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

SELECT FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT ESBY1.EmployeeID, ;
 ESBY1.OrderYear, ;
 ESBY1.TotalSales ;
 FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales <= ESBY2.TotalSales ;
 GROUP BY 1, 2,3 ;
 HAVING COUNT(*) <= 5) csrTop5;
 ON Employees.EmployeeID = csrTop5.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrTopEmployeeSalesByYear

The first query here is just a variant of Listing 28. The key portion of this approach is the
derived table in the second query, in particular, the join condition between the two
instances of csrEmpSalesByYear, shown in Listing 32. Records are matched up first by
having the same year and then by having sales in the second instance be the same or more
than sales in the first instance. This results in a single record for the employee from that
year with the highest sales total, two records for the employee with the second highest
sales total and so on.

Listing 32. The key to this solution is the unorthodox join condition between two instances of the same table.

FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales <= ESBY2.TotalSales

The GROUP BY and HAVING clauses then combine all the records for a given employee and
year, and keeps only those where the number of records in the intermediate result is five or
fewer (that is, where the count of records in the group is five or less), providing the top five
salespeople for each year.

To make more sense of this solution, first consider the query in Listing 33 (included in the
materials for this session as TopNEmployeeSalesByYearBeforeGrouping.prg). It assumes
we’ve already run the query to create the EmpSalesByYear cursor. It shows the results

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 27 of 51

(plus a couple of additional fields) from the derived table in Listing 31 before the GROUP
BY is applied. In the partial results shown in Figure 10, you can see one record for
employee 4 in 1996, two for employee 1, three for employee 8 and so forth. The added
columns Emp2ID and Emp2Sales show which row in ESBY2 resulted in this result row. So,
for employee 4 in 1996, the only row that met the conditions was the one for employee 4 in
1996. For employee 1 in 1996, both employee 4 and itself met the conditions of total sales
the same or more than his or her own.

Listing 33. This query demonstrates the intermediate results for the derived table in Listing 31.

SELECT ESBY1.EmployeeID, ;
 ESBY1.OrderYear, ;
 ESBY1.TotalSales , ;
 ESBY2.EmployeeID AS Emp2ID, ;
 ESBY2.TotalSales AS Emp2Sales ;
 FROM EmpSalesByYear ESBY1 ;
 JOIN EmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales <= ESBY2.TotalSales ;
 ORDER BY ESBY1.OrderYear, ESBY1.TotalSales DESC ;
 INTO CURSOR csrIntermediate

Figure 10. The query in Listing 33 unfolds the data that’s grouped in the derived table.

The problem with this approach to the problem is that, as the size of the original data
increases, it can get bogged down. So while this solution has a certain elegance, in the long
run, a SQL plus Xbase solution is probably a better choice.

By the way, this example (the one in Listing 31) shows where CTEs (common table
expressions, explained earlier in this paper) would be useful in VFP’s SQL. We can’t easily
combine the two queries into one because the second query uses two instances of the
EmpSalesByYear. If VFP supported CTEs, we could make the query that creates
EmpSalesByYear into a CTE, and then use it twice in the main query.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 28 of 51

The SQL Server solution

Solving the top n by group problem in SQL Server uses a couple of CTEs, but also uses
another construct that’s not available in VFP’s version of SQL.

The OVER clause lets you apply a function to all or part of a result set; it’s used in the field
list. There are several variations, but the basic structure is shown in Listing 34.

Listing 34. The OVER clause lets you apply a function to all or some of the records in a query.

<function> OVER (<grouping and/or ordering>)

OVER lets you rank records, as well as applying aggregates to individual items in the field
list. In SQL Server 2012 and later, OVER has additional features that let you compute
complicated aggregates such as running totals and moving averages.

For the top n by group problem, we want to rank records within a group and then keep the
top n. To do that, we can use the ROW_NUMBER() function, which , as its name suggests,
returns the row number of a record within a group (or within the entire result set, if no
grouping is specified).

For example, Listing 35 (included in the materials for this session as
EmployeeOrderNumber.sql) shows a query that lists AdventureWorks (2008) employees
in the order they were hired, giving each an "employee order number." Here, the data is
ordered by HireDate and then ROW_NUMBER() is applied to provide the position of each
record. Figure 11 shows partial results.

Listing 35. Using ROW_NUMBER() with OVER lets you give records a rank.

SELECT FirstName, LastName, HireDate,
 ROW_NUMBER() OVER (ORDER BY HireDate)
 AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 29 of 51

Figure 11. The query in Listing 35 applies a rank to each employee by hire date.

But look at Ruth Ellerbock and Gail Erickson; they have the same hire date, but different
values for EmployeeOrderNumber. Sometimes, that’s what you want, but sometimes, you
want such records to have the same value.

The ROW_NUMBER() funtion doesn’t know anything about ties. However, the RANK()
function is aware of ties and assigns them the same value, then skips the appropriate
number of values. Listing 36 (EmployeeRank.SQL in the materials for this session) shows
the same query using RANK() instead of ROW_NUMBER(); Figure 12 shows the first few
records. This time, you can see that Ellerbock and Erickson have the same rank, 8, while
Barry Johnson, who immediately follows them, still has a rank of 10.

Listing 36. The RANK() function is aware of ties, assigning them the same value.

SELECT FirstName, LastName, HireDate,
 RANK() OVER (ORDER BY HireDate)
 AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 30 of 51

Figure 12. Using RANK() assigns the same EmployeeOrderNumber to records with the same hire date.

You can’t say that either ROW_NUMBER() or RANK() is right; which one you want depends
on the situation. In fact, there’s a third related function, DENSE_RANK() that behaves like
RANK(), giving ties the same value, but then continues numbering in order. That is, if we
used DENSE_RANK() in this example, Barry Johnson would have a rank of 9, rather than 10.

Partitioning with OVER

In addition to specifying ordering, OVER also allows us to divide the data into groups
before applying the function, using the PARTITION BY clause. The query in Listing 37
(included in the materials for this session as EmployeeRankByDept.sql) assigns employee
ranks within each department rather than for the company as a whole by using both
PARTITION BY and ORDER BY. Figure 13 shows partial results; note that the numbering
begins again for each department and that ties are assigned the same rank.

Listing 37. Combining PARTITION BY and ORDER BY in the OVER clause lets you apply ranks within a group.

SELECT FirstName, LastName, StartDate,
 Department.Name,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
 AS EmployeeRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE EndDate IS null

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 31 of 51

Figure 13. Here, employees are numbered within their current department, based on when they started in
that department.

This example should provide a hint as to how we’ll solve the top n by group problem, since
we now have a way to number things by group. All we need to do is filter so we only keep
those whose rank within the group is in the range of interest. However, it’s not possible to
filter on the computed field EmployeeOrderNumber in the same query. Instead, we turn
that query into a CTE and filter in the main query, as in Listing 38
(LongestStandingEmployeesByDept.sql in the materials for this session).

Listing 38. Once we have the rank for an item within its group, we just need to filter to get the top n items by
group.

WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
 Department.Name AS Department,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
 AS EmployeeRank
 FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE EndDate IS NULL)

 SELECT FirstName, LastName, StartDate, Department
 FROM EmpRanksByDepartment
 WHERE EmployeeRank <= 3
 ORDER BY Department, StartDate

Figure 14 shows part of the result. Note that there are many more than three records for
the Sales department because a whole group of people started on the same day. If you
really want only three per department and don’t care which records you omit from a last-
place tie, use RECORD_NUMBER() instead of RANK().

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 32 of 51

Figure 14. The query in Listing 38 provides the three longest-standing employees in each department.
When there are ties, it may produce more than three results.

Applying the same principle to finding the top five salespeople by year at AdventureWorks
(to match our VFP example) is a little more complicated because we have to compute sales
totals first. To make that work, we first use a CTE to compute those totals and then a
second CTE based on that result to add the ranks. (Note the comma between the two CTEs.)
Listing 39 (TopSalesPeopleByYear.sql in the materials for this session) shows the
complete query.

Listing 39. Finding the top five salepeople by year requires cascading CTEs, plus the OVER clause.

WITH TotalSalesBySalesPerson AS
(SELECT BusinessEntityID,
 YEAR(OrderDate) AS nYear,
 SUM(SubTotal) AS TotalSales
 FROM Sales.SalesPerson
 JOIN Sales.SalesOrderHeader
 ON SalesPerson.BusinessEntityID = SalesOrderHeader.SalesPersonID
GROUP BY BusinessEntityID, YEAR(OrderDate)),

RankSalesPerson AS
(SELECT BusinessEntityID, nYear, TotalSales,
 RANK() OVER
 (PARTITION BY nYear
 ORDER BY TotalSales DESC) AS nRank
 FROM TotalSalesBySalesPerson)

SELECT FirstName, LastName, nYear, TotalSales
 FROM RankSalesPerson
 JOIN Person.Person
 ON RankSalesPerson.BusinessEntityID = Person.BusinessEntityID
 WHERE nRank <= 5

The first CTE, TotalSalesBySalesPerson, contains the ID for the salesperson, the year and
that person‘s total sales for the year. The second CTE, RankSalesPerson, adds rank within
the group to the data from TotalSalesByPerson. Finally, the main query keeps only the top
five in each and adds the actual name of the person. Figure 15 shows partial results.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 33 of 51

Figure 15. These partial results show the top five salespeople by year.

It’s worth noting the very cool feature demonstrated by this query. Not only can a query
have multiple CTEs, but CTEs later in the list can be based on previous CTEs. So
RankSalesPerson uses TotalSalesBySalesPerson in its FROM list.

The OVER clause has other uses, such as helping to de-dupe a list. In SQL 2012 and later, it’s
even more useful, with the ability to apply the function to a group of records based not only
on an expression, but based on position within a group.

Summarize aggregated data
As earlier sections of this paper show, SQL SELECT’s GROUP BY clause makes it easy to
aggregate data in a query. Just include the fields that specify the groups and some fields
using the aggregate functions (COUNT, SUM, AVG, MIN, MAX in VFP; SQL Server has those
and a few more).

For example, the query in Listing 40 (TotalsByCountryCity.PRG in the materials for this
session) fills a cursor with sales for each city for each month; Figure 16 shows partial
results.

Listing 40. This query computes total sales for each combination of country, city, year and month.

SELECT Country, City, ;
 YEAR(OrderDate) AS OrderYear, MONTH(OrderDate) AS OrderMonth, ;
 SUM(Quantity * OrderDetails.UnitPrice) AS nTotal ;
 AVG(Quantity * OrderDetails.UnitPrice) AS nAvg, ;
 COUNT(*) AS nCount ;
 FROM Customers ;
 JOIN Orders ;
 ON Customers.CustomerID = Orders.CustomerID ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY OrderYear, OrderMonth, ;
 Country, City ;
 ORDER BY Country, City, ;
 OrderYear, OrderMonth ;

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 34 of 51

 INTO CURSOR csrCtyTotals

Figure 16. The query in Listing 40 computes the total sales for each city in each month.

You can do an analogous query using the SQL Server AdventureWorks 2008 database,
though it involves a lot more tables because the AdventureWorks database covers a wider
range of data than just sales. Listing 41 (SalesByCountryCity.SQL in the materials for this
session) shows the corresponding SQL Server query.

Listing 41. Aggregating the data with SQL Server’s AdventureWorks 2008 database is more verbose, but
contains the same elements.

SELECT Person.CountryRegion.Name AS Country,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales
 AVG(SubTotal) AS AvgSale,
 COUNT(*) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 35 of 51

The rules for grouping are pretty simple. The field list contains two types of fields, those to
group on, and those that are being aggregated. In the VFP example, the fields to group on
are Country, City, OrderYear and OrderMonth, and the aggregated fields are nTotal, nAvg
and nCount. The SQL Server query has the same list, but some of the field names are
different. (Before VFP 8, you could include fields in the list that were neither grouped or
nor aggregated, but doing so could give you misleading results. This article on my website
explains the problem in detail: http://tinyurl.com/leydyqw.)

Computing group totals

What the basic query doesn’t give you, though, is aggregation (that is, summaries) at any
level except the one you specify. That is, while you get the total, average and count for a
specific city in a specific month, you don’t get them for that city for the whole year, or for
that month for a whole country, and so on. Figure 17 shows what we’re looking for. At the
end of each year, a new record shows the total, average and count for that year. At the end
of each city, another record shows the city’s total, average and count and at the end of each
country, yet another record has country-wide results.

Figure 17. It can be useful to have group totals in the same cursor as the original data.

In VFP, there are three ways to get that data. One is to create a report and use totals and
report variables to compute and report that data, but of course, then you only have the data
as output, not in a VFP cursor.

The second choice is to use Xbase code to compute them based on the initial cursor. Listing
42 (WithGroupTotalsXbase.PRG in the materials for this session) shows how to do this; it
assumes you’ve already run the query in Listing 40. It keeps running totals and counts for

http://tinyurl.com/leydyqw

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 36 of 51

each level: year, city, country and overall. Then, when one of those changes, it inserts the
appropriate record.

Listing 42. You can add subgroup aggregates by looping through the cursor.

LOCAL nYearTotal, nCityTotal, nCountryTotal, nGrandTotal
LOCAL nYearCnt, nCityCnt, nCountryCount, nGrandCount
LOCAL nCurYear, cCurCity, cCurCountry

* Create a new cursor to hold the results
SELECT * ;
 FROM csrCtyTotals ;
 WHERE .F. ;
 INTO CURSOR csrWithGroupTotals READWRITE

SELECT csrCtyTotals
STORE 0 TO nYearTotal, nCityTotal, nCountryTotal, nGrandTotal
STORE 0 TO nYearCount, nCityCount, nCountryCount, nGrandCount
nCurYear = csrCtyTotals.OrderYear
cCurCity = csrCtyTotals.City
cCurCountry = csrCtyTotals.Country

SCAN
 * First check for end of year,
 * but could be same year and change of city
 * or country.
 IF csrCtyTotals.OrderYear <> m.nCurYear OR ;
 NOT (csrCtyTotals.City == m.cCurCity) OR;
 NOT (csrCtyTotals.Country == m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;
 VALUES (m.cCurCountry, m.cCurCity, ;
 m.nCurYear, .null., ;
 m.nYearTotal, ;
 m.nYearTotal/m.nYearCount, ;
 m.nYearCount)
 m.nCurYear = csrCtyTotals.OrderYear
 STORE 0 TO m.nYearTotal, m.nYearCount

 * Now check for change of city
 IF NOT (csrCtyTotals.City == m.cCurCity) ;
 OR NOT (csrCtyTotals.Country == m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;
 VALUES (m.cCurCountry, ;
 m.cCurCity, ;
 .null., .null., ;
 m.nCityTotal, ;
 m.nCityTotal/m.nCityCount, ;
 m.nCityCount)
 m.cCurCity = csrCtyTotals.City
 STORE 0 TO m.nCityTotal, m.nCityCount

 * Now check for change of country
 IF NOT (csrCtyTotals.Country == m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 37 of 51

 VALUES (m.cCurCountry, .null., ‚
 .null., .null., ;
 m.nCountryTotal, ;
 m.nCountryTotal/m.nCountryCount, ;
 m.nCountryCount)
 m.cCurCountry = csrCtyTotals.Country
 STORE 0 TO m.nCountryTotal, m.CountryCount
 ENDIF
 ENDIF
 ENDIF

 * Now handle current record
 INSERT INTO csrWithGroupTotals ;
 VALUES (csrCtyTotals.Country, ;
 csrCtyTotals.City, ;
 csrCtyTotals.OrderYear, ;
 csrCtyTotals.OrderMonth, ;
 csrCtyTotals.nTotal, ;
 csrCtyTotals.nAvg, ;
 csrCtyTotals.nCount)
 nYearTotal = m.nYearTotal + csrCtyTotals.nTotal
 nYearCount = m.nYearCount + csrCtyTotals.nCount
 nCityTotal = m.nCityTotal + csrCtyTotals.nTotal
 nCityCount = m.nCityCount + csrCtyTotals.nCount
 nCountryTotal = m.nCountryTotal + csrCtyTotals.nTotal
 nCountryCount = m.nCountryCount + csrCtyTotals.nCount
 nGrandTotal = m.nGrandTotal + csrCtyTotals.nTotal
 nGrandCount = m.nGrandCount + csrCtyTotals.nCount

ENDSCAN

* Now insert grand totals
INSERT INTO csrWithGroupTotals ;
 VALUES (.null., .null., .null., .null., ;
 m.nGrandTotal, ;
 m.nGrandTotal/m.nGrandCount, ;
 m.nGrandCount)

The third choice is to do a series of queries, each grouping on different levels and then
consolidate the results. Listing 43 shows this version of the code; as in the previous
example, it assumes you’ve already run the query that creates csrCtyTotals. This code
creates a cursor with each city’s annual totals, one with each city’s overall totals, one with
each country’s overall totals, and one containing the grand total. Then it uses UNION to
combine all the results into a single cursor. It’s included in the materials for this session as
WithGroupTotalsSQL.PRG.

Listing 43. You can add the yearly, city-wide and country-wide totals using SQL, as well.

* Now year totals by city
SELECT Country, City, OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 38 of 51

 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country, City, OrderYear ;
 INTO CURSOR csrYearTotals

* Now city totals
SELECT Country, City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country, City ;
 INTO CURSOR csrCityTotals

* Now country totals
SELECT Country, ;
 REPLICATE('Z', 15) AS City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country ;
 INTO CURSOR csrCountryTotals

* Now grand total
SELECT REPLICATE('Z', 15) AS Country, ;
 REPLICATE('Z', 15) AS City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 INTO CURSOR csrGrandTotal

* Create one cursor
SELECT * ;
 FROM csrCtyTotals ;
UNION ALL ;
SELECT * ;
 FROM csrYearTotals ;
UNION ALL ;
SELECT * ;
 FROM csrCityTotals ;
UNION ALL ;
SELECT * ;
 FROM csrCountryTotals ;
UNION ALL ;
SELECT * ;
 FROM csrGrandTotal ;
 ORDER BY Country, City, ;

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 39 of 51

 OrderYear, OrderMonth ;
 INTO CURSOR csrWithGroupTotals READWRITE

UPDATE csrWithGroupTotals ;
 SET OrderMonth = .null. ;
 WHERE OrderMonth = 999

UPDATE csrWithGroupTotals ;
 SET OrderYear = .null. ;
 WHERE OrderYear = 99999

UPDATE csrWithGroupTotals ;
 SET City = .null. ;
 WHERE City = REPLICATE('Z', 15)

UPDATE csrWithGroupTotals ;
 SET Country = .null. ;
 WHERE Country = REPLICATE('Z', 15)

There’s one trick in this code. If we put null into the fields that are irrelevant for a given
total, when we sort the result, the totals appear above rather than below the records they
represent. Instead, we put an impossible value that sorts to the bottom initially, then
change it to null after ordering the data.

Introducing ROLLUP

Of course, the reason for showing all this code is that SQL Server makes it much easier. The
ROLLUP clause lets you compute these summaries as part of the original query.

ROLLUP appears in the GROUP BY clause, looking like a function around the fields you
apply it to. Listing 44 shows the SQL Server equivalent of Listing 42 and Listing 43; the
code is included in the materials for this session as SalesByCountryCityRollup.SQL. Figure
18 shows partial results.

Listing 44. SQL Server’s ROLLUP clause computes the subgroup aggregates as part of the query.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
 YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 40 of 51

 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY ROLLUP(CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

Figure 18. In SQL Server, it’s easy to compute aggregates for subgroups.

The order of the fields in the ROLLUP clause matters. The last one listed is summarized
first. In Figure 18, you can see that the first level of summary is the whole year for a given
city and country, because the month column is listed last. If you change the order in the
ROLLUP clause to put the city last, as in Listing 45, the first summary level is a single
month (and year), across all cities in a country; Figure 19 shows partial results.

Listing 45. The order of the fields in the ROLLUP clause matters. Changing the order changes what
summaries you get.

GROUP BY ROLLUP(CountryRegion.Name, YEAR(OrderDate),
 MONTH(OrderDate), Address.City)

Figure 19. When you change the order of fields in the ROLLUP clause, you get a different set of summaries.

The ROLLUP clause doesn’t have to surround all the fields in the GROUP BY, only the ones
for which you want summaries. So, if you don’t need a grand total in the previous example,

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 41 of 51

you can put CountryRegion.Name before the ROLLUP clause, as in Listing 46. Similarly, if
you want summaries only for each city and year, put both CountryRegion.Name and
Address.City before the ROLLUP clause. You can also put fields after the ROLLUP clause, but
in my testing, the results aren’t terribly useful.

Listing 46. Not all fields have to be included in ROLLUP, just those that should be summarized. With this
GROUP BY clause, the results won’t include grand totals because we’re not rolling up the country.

GROUP BY CountryRegion.Name,
 ROLLUP(Address.City,
 YEAR(OrderDate),
 MONTH(OrderDate))

Note also that when ROLLUP is involved, you use the source field names, not the result field
names in the GROUP BY clause.

ROLLUP with cross-products

You can use two ROLLUP clauses in the same GROUP BY. Doing so gives you the cross-
product of the two groups. That is, you get the results you’d get from either ROLLUP, but
you also get combinations of the two.

For example, if you change the GROUP BY clause in Listing 44 to the one shown in Listing
47, you get all the rows you had before, but you also get summaries for each country for
each month and year, as well as overall summaries for each month and for each year.
Figure 20 shows part of the results. The complete query is included in the materials for
this session as SalesByCountryCityRollupXProd.SQL.

Listing 47. You can use two ROLLUP clauses to generate the cross-product of the two sets of fields.

GROUP BY ROLLUP(YEAR(OrderDate), MONTH(OrderDate)),
 ROLLUP(CountryRegion.Name, Address.City)

Figure 20. Using the GROUP BY clause in Listing 47 with the earlier query provides summaries for not just
each city by year, each city overall, and each country, but also for each country by month and by year, and for
each month and each year.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 42 of 51

As with a single ROLLUP clause, the order in which you list the ROLLUP clauses and the
order of the fields within them determines both what summaries you get and, if you don’t
use an ORDER BY clause, the order of the records in the result.

Adding descriptions to summaries

In all the examples so far, the null value indicates which field is being summarized. But you
can put descriptive data in those fields instead.

Wrap the columns being rolled up with ISNULL() and specify the string you want in the
summary rows as the alternate. (ISNULL() in SQL Server behaves like VFP’s NVL() function,
returning the first parameter unless it’s null, in which case it returns the second
parameter.) Listing 48 (SalesByCountryCityRollupWDesc.SQL in the materials for this
session) shows the same query as Listing 44, except that each of the non-aggregated fields
includes a description to use when it’s summarized. Doing so requires changing the year
and month columns to character, of course. Figure 21 shows a chunk of the results.

Listing 48. Rather than having null indicate a summary row, use the description you want.

SELECT ISNULL(Person.CountryRegion.Name, 'All countries') AS Country,
 ISNULL(Person.Address.City, 'All cities') AS City,
 ISNULL(STR(YEAR(OrderDate)), 'All years') AS OrderYear,
 ISNULL(STR(MONTH(OrderDate)), 'All months') AS OrderMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY ROLLUP(CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 43 of 51

Figure 21. Including descriptions instead of null makes it easier to understand the summary lines.

Introducing CUBE

ROLLUP is limited to summarizing based only on the hierarchy you specify. For example,
the query in Listing 44 doesn’t give summaries for each country for each year. While you
can get that result with ROLLUP, you have to give up some other summaries to do so.

If you want to summarize based on every possible combination of values, use CUBE rather
than ROLLUP. The query in Listing 49 is identical to the one in Listing 44, except that the
GROUP BY clause specifies CUBE rather than ROLLUP. Figure 22 shows part of the results.
The items at the top of the grid include summaries you wouldn’t get with ROLLUP, such as
the summary for all locations in all Decembers about halfway down and the summary for
Australia for all of 2005 in the last row shown. This query is included in the materials for
this session as SalesByCountryCityCubeNoOrder.sql.

Listing 49. Use the CUBE clause to get summaries for all combinations of values.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
 YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY CUBE(CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 44 of 51

Figure 22. When you specify CUBE, every possible combination of values is summarized.

However, some of the results of this query are misleading. The first few rows in Figure 22
should give you a clue as to the problem. We’re summarizing by name of a city for a month.
What if we have multiple cities with the same name? In fact, this data set contains several
repeated city names, among them Birmingham. Figure 23 shows that when both
Birminghams have data for a given month, we get a total for that month that covers both
cities, which is meaningless.

Figure 23. Some of the summarized results can be misleading if fields are dependent on each other. Here, we
get totals for a given month for both Birminghams.

The way to avoid the problem is to group fields together if their data is linked. You do that
by putting parentheses around the fields to be grouped. Listing 50 shows the same query,
but with the Country and City fields grouped together. (It also has an ORDER BY clause to
sort the results into a useful order.) It’s included in the materials for this session as
SalesByCountryCityCubeCombined.sql. Figure 24 shows partial results; note that there are
no totals where Name is null, but City is not.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 45 of 51

Listing 50. Group fields with parentheses in the CUBE clause to have them treated as a single dimension.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
 YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY CUBE((CountryRegion.Name, Address.City),
 YEAR(OrderDate),
 MONTH(OrderDate))
 ORDER BY Country, City, nYear, nMonth

Figure 24. With country and city grouped, the results don’t have totals for a city without the associated
country.

If you don’t want summaries for each month across the years (that is, for example, for all
Aprils), you can group year and month in the CUBE clause, as well, as in Listing 51. A query

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 46 of 51

that uses this CUBE clause is included in the materials for this session as
SalesByCountryCityCubeCombinedBoth.sql.

Listing 51. You can have multiple groups of fields within the CUBE clause.

GROUP BY CUBE((CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)))

Fine tuning the set of summaries

ROLLUP and CUBE take care of very common scenarios, but each is restricted in which set
of summaries you can get, and each includes the basic aggregated data in the result. What if
you want a different set of summaries? What if you want just the summaries without the
basic aggregated data?

In our example, suppose you want to see the summary for each month across all years and
locations, the summary for each year across all months and locations, and the summary for
each location across all months and years? You could get those results by doing a separate
query for each and then combining them with UNION ALL, as in Listing 52
(SummariesUnion.SQL in the materials for this session); Figure 25 shows partial results.

Listing 52. You can retrieve just the summaries using UNION ALL.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
 null AS nYear, null AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY Person.CountryRegion.Name, City
UNION ALL
SELECT NULL AS Country, NULL City,
 NULL AS nYear, MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.SalesOrderHeader
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 47 of 51

 GROUP BY MONTH(OrderDate)
UNION ALL
SELECT NULL AS Country, NULL AS City,
 YEAR(OrderDate) AS nYear, NULL AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.SalesOrderHeader
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY YEAR(OrderDate)
 ORDER BY Country, City, nYear, nMonth

Figure 25. Sometimes, you want only the summaries, not the original aggregations.

That’s a lot of code. SQL Server offers an alternative way to do this, using a feature called
grouping sets. They let you fine tune which summaries you get. With grouping sets, you
explicitly tell the query which combinations to summarize. The grouping sets equivalent of
the UNIONed query in Listing 52 is shown in Listing 53 (included in the materials for this
session as SummariesGroupingSets.SQL).

Listing 53. GROUPING SETS let you ask for the specific set of summaries you want.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
 YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 48 of 51

 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY GROUPING SETS ((CountryRegion.Name, Address.City),
 (YEAR(OrderDate)),
 (MONTH(OrderDate)))
 ORDER BY Country, City, YEAR(OrderDate), MONTH(OrderDate)

The GROUP BY clause indicates three grouping sets here, each enclosed in parentheses:
(CountryRegion.Name, Address.City) which says to show totals for each city and country
combination, across all years and months; (YEAR(OrderDate)), which asks for totals for
each year, across all locations and months; and (MONTH(OrderDate)), which requests
totals for each month, across all locations and years. The parentheses are required in the
first case, to show that city and country are to be treated as a set. While they’re not
required for the other two items, they do make clear that each is to be handled separately.

ROLLUP and CUBE are actually special cases of grouping sets. You can use grouping sets to
get the same results, though it actually makes the code longer. Listing 54 shows the GROUP
BY clause for the grouping sets equivalent of the ROLLUP query in Listing 44. (The
complete version of this query is included in the materials for this session as
GroupingSetsRollupEquiv.sql.)

Listing 54. You can use GROUPING SETS instead of ROLLUP, but it calls for more code in the GROUP BY
clause.

GROUP BY GROUPING SETS (
 (CountryRegion.Name, Address.City, YEAR(OrderDate), MONTH(OrderDate)),
 (CountryRegion.Name, Address.City, YEAR(OrderDate)),
 (CountryRegion.Name, Address.City),
 (CountryRegion.Name),
 ())

There are five grouping sets shown. The first set, which includes all four non-aggregated
fields is the equivalent of simply doing GROUP BY with that list. It does the aggregation, but
no summaries.

Each grouping set after that contains one fewer field than the preceding one, until the last
contains no field, indicating that the summary should be computed over the entire data set.
Looking at this GROUP BY clause actually helps to clarify what ROLLUP does. It aggregates
on all the fields listed, then one by one, removes fields from the right and aggregates again.

For the equivalent of CUBE, the GROUPING SETS list is even more unwieldy, but again it
sheds light on what’s going on when you use CUBE. Listing 55 shows the GROUP BY clause
for a query (GroupingSetsCubeCombinedEquiv.sql in the materials for this session) that
produces the same results as Listing 50.

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 49 of 51

Listing 55. Replacing CUBE with GROUPING SETS lets you see all the cases that CUBE handles.

GROUP BY GROUPING SETS(
 (CountryRegion.Name, Address.City, YEAR(OrderDate), MONTH(OrderDate)),
 (CountryRegion.Name, Address.City, YEAR(OrderDate)),
 (CountryRegion.Name, Address.City, MONTH(OrderDate)),
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)),
 (YEAR(OrderDate)),
 (MONTH(OrderDate)),
 ())

Note that unlike the CUBE query, you don’t have to (in fact, can’t) enclose the country/city
pair in parentheses here. You just omit any grouping sets that include one without the
other.

Of course, there’s no reason to write out the long version when you can use ROLLUP or
CUBE. But when you need something else, having grouping sets available is a big help.

As Listing 53 demonstrates, grouping sets also let you get summaries without including
the basic aggregated data. Just omit the grouping set that lists all the fields on which to
aggregate. Be aware, though, that as with any other GROUP BY clause, every field in the
field list that doesn’t include an aggregate function must appear somewhere in the list of
grouping sets.

Listing 56 shows the GROUP BY clause for a query that’s equivalent to Listing 50, but
without the first grouping set, so that only the summaries are included. Figure 26 shows
partial results; if you compare to Figure 24, you can see that the rows where nothing is
null have been eliminated. This query is included as GroupingSetsWithoutAggregates.sql in
the materials for this session.

Listing 56. By omitting the grouping set that includes all non-aggregated fields, you can get just the
summaries you want without the base aggregated data.

GROUP BY GROUPING SETS(
 (CountryRegion.Name, Address.City, YEAR(OrderDate)),
 (CountryRegion.Name, Address.City, MONTH(OrderDate)),
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)),
 (YEAR(OrderDate)),
 (MONTH(OrderDate)),
 ())

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 50 of 51

Figure 26. When you exclude the grouping set that contains all aggregated fields, the result contains only the
summaries.

Make it pretty

As with the ROLLUP clause, for both CUBE and GROUPING SETS, you can make the results
easier to understand by using ISNULL() to replace the nulls with meaningful descriptions.

Listing 57 shows the query from Listing 50 with the descriptions added. Figure 27 shows
partial results. The query is included in the materials for this session as
SalesByCountryCityCubeCombinedWDesc.sql.

Listing 57. You can replace the nulls that indicate summary records with descriptions.

SELECT ISNULL(Person.CountryRegion.Name, 'All countries') AS Country,
 ISNULL(Person.Address.City, 'All cities') AS City,
 ISNULL(STR(YEAR(OrderDate)), 'All years') AS cYear,
 ISNULL(STR(MONTH(OrderDate)), 'All months') AS cMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID = Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID = Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID = StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID = SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail

Go Beyond VFP's SQL with SQL Server

Copyright 2014, Tamar E. Granor Page 51 of 51

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
 GROUP BY CUBE((CountryRegion.Name, Address.City),
 YEAR(OrderDate),
 MONTH(OrderDate))
 ORDER BY Country, City, cYear, cMonth

Figure 27. You can use ISNULL() to substitute descriptions for nulls, and make the results easier to
comprehend.

What about VFP?

I showed how to do the equivalent of ROLLUP in VFP. The second approach shown there,
using a separate query for each summary you want, and then combining the results with
UNION, works for CUBE and GROUPING SETS, as well. Of course, the resulting code is fairly
opaque. That’s why having these shortcuts in SQL Server is so nice.

Keep on learning
While I read articles and examples of each of these features to learn them, it was trying
different variations that really helped me understand them. I strongly recommend you
start with the examples here and then try building analogous code against your own data,
or modifying this code to see the results.

Beyond that, the features in this paper are only a subset of those T-SQL offers that aren’t
part of VFP’s SQL. If you’re really trying to learn more T-SQL, find a SQL Q&A forum and
start reading. I’ve learned a lot reading the one at www.tek-tips.com;
http://www.sqlservercentral.com/ has articles and Q&A forums. There are lots of others,
as well.

http://www.tek-tips.com/
http://www.sqlservercentral.com/

