- 1

Go Beyond VFP's SQL with SQL
Server

Tamar E. Granor

Tomorrow's Solutions, LLC

Voice: 215-635-1958

Email: tamar@tomorrowssolutionslic.com

The subset of SQL in Visual FoxPro is useful for many tasks. But there's much more to SQL
than what VFP supports. Those additions make it easy to do a number of tasks that are
difficult in VFP.

In this session, we'll solve some common problems, using SQL elements that are supported by
SQL Server, but not by VFP. Among the problems we'll explore are combining a set of values
contained in multiple records into a delimited list in a single record, working with
hierarchical data like corporate organization charts, finding the top N records for each group
in a result, and including summary records in grouped data.

Go Beyond VFP's SQL with SQL Server

Introduction

When FoxPro 2.0 was released nearly 25 years ago, it included some SQL commands. I fell
in love as soon as [started playing with them. Over the years, Visual FoxPro’s SQL subset
has grown, but there are still some tasks that are hard or impossible to do with SQL alone
in VFP, but a lot easier in other SQL dialects. In this session, I'll take a look at some of these
tasks, showing you how VFP requires a blend of SQL and Xbase code, but SQL Server allows
them to be done with SQL code only.

You're unlikely to be choosing whether to store your data in VFP or in SQL Server based on
which one makes these tasks easier. However, when you switch from working with VFP
databases to working with SQL Server databases, it's easy to just keep doing things the way
you have been. The goal of this session is to show you how you can code better in SQL
Server by learning some new approaches.

The VFP examples in this session use the example Northwind database. Most of the SQL
examples in this session use the example AdventureWorks 2008 database, which you can
download from http://tinyurl.com/cp2fv8w. One group of examples uses the
AdventureWorks 2005 database, because the 2008 version no longer includes the structure
being discussed; you can download AdventureWorks 2005 from

http://tinyurl.com /y943xr9.

Consolidate data from a field into a list

One of the most common questions I see in online VFP forums is how to group data,
consolidating the data from a particular field. If the consolidation you want is counting,
summing, or averaging, the task is simple; just use GROUP BY with the corresponding
aggregate function.

But if you want to create a comma-separated list of all the values or something like that,
there’s no SQL-only way to do it in VFP. SQL Server, however, provides not one, but two,
ways.

The VFP way

Using the Northwind database that comes with VFP, suppose you want (say, for reporting
purposes) to have a list of orders, with a comma-separated list of the products included in
each order, something like what you see in Figure 1.

Copyright 2014, Tamar E. Granor Page 2 of 51

http://tinyurl.com/cp2fv8w
http://tinyurl.com/y943xr9

Go Beyond VFP's SQL with SQL Server

Csrorderproductlist EI@

Iorderid Cproducts
¥ SRS Mozzarella di Giovanni, Queso Cabrales, Singaporean Hokkien Fried Mee

10249 Manjimup Dried Apples, Tofu

10250 Jack's New England Clam Chowder, Louisiana Fiery Hot Pepper Sauce, Manjimup Dried Apples

10251 Gustaf's Kndckebrod, Louisiana Fiery Hot Pepper Sauce, Ravioli Angelo

10252 ; Camembert Pierrot, Geitost, Sir Rodney's Marmalade

10253 Chartreuse verte, Gorgonzola Telino, Maxilaku

10254 i Guaran Fant stica, TLonglife Tofu, PAté chinois

10255 Chang, TInlagd 5il11, Pavlowva, Raclette Courdavault

10256 :0riginal Frankfurter grine Soae, Perth Pasties

10257 | Chartreuse verte, Original Frankfurter griine Soae, Schoggi Schokolade

10258 | Chang, Chef Anton's Gumbo Mix, Mascarpone Fabioli

10259 Gravad lax, Sir Rodney's Scones

[

Figure 1. This cursor includes each order from the Northwind database with a comma-separated list of the
products ordered.

VFP’s SQL commands offer no way to combine the products like that. Instead, you have to
run a query to collect the raw data and then use a loop to combine the products for each
order. Listing 1 shows the code used to produce the cursor for the figure. (Like all the VFP
examples in this paper, this one assumes you've already opened the Northwind database.)

Listing 1. To consolidate data into a comma-separated list in VFP requires a combination of SQL and Xbase
code.

SELECT DISTINCT Orders.OrderID, Products.ProductName ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
JOIN Products ;
ON OrderDetails.ProductID = Products.ProductID ;
ORDER BY Orders.OrderID, ProductName ;
INTO CURSOR csrOrderProducts

LOCAL cProducts, cCurOrderID
CREATE CURSOR csrOrderProductList (iOrderID I, cProducts C(150))

SELECT csrOrderProducts
cCurOrderID = csrOrderProducts.OrderID
cProducts = "'

SCAN

IF csrOrderProducts.OrderID <> m.cCurOrderID
* Finished this order
INSERT INTO csrOrderProductList ;

VALUES (m.cCurOrderID, SUBSTR(m.cProducts, 3))

cProducts = "'
cCurOrderID = csrOrderProducts.OrderID

ENDIF

cProducts = m.cProducts + ', ' + ALLTRIM(csrOrderProducts.ProductName)
ENDSCAN

Copyright 2014, Tamar E. Granor Page 3 of 51

Go Beyond VFP's SQL with SQL Server

The query uses DISTINCT because we only want to include each product in the list once for
each order. It also sorts the results by OrderID, which is necessary for the SCAN loop, and
then by name within the order, so the result has the products in alphabetical order.

The SCAN loop builds up the list of products for a single order and then when we reach a
new order, adds a record to the result cursor and clears the cProducts variable, so we can
start over for the new order.

The code in Listing 1 is included in the materials for this session as
VFPProductsByOrder.PRG

The SQL way

SQL Server offers two ways to solve this problem. Each approach teaches something about
elements of SQL Server that don’t exist in VFP’s SQL, so we'll look at both.

Using the AdventureWorks 2008 database, to get an example analogous to the VFP
example, we can join the PurchaseOrderDetail table to the Product table to get a list of the
products included in each purchase order, as in Listing 2.

Listing 2. This query, based on the AdventureWorks 2008 database, produces a list of products for each
purchase order.

SELECT PurchaseOrderID, Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
On Production.Product.ProductID = PurchaseOrderDetail.ProductID
ORDER BY PurchaseOrderID

We’ll use this query as a basis for getting one record per purchase order with the list of
products comma-separated.

FOR XML

The first approach uses the FOR XML clause. In general, this clause allows you to convert
SQL results to XML. There are four variations of FOR XML; three of them produce XML
results and vary only in how much control you have over the format of the result. For
example, if you add the clause FOR XML AUTO at the end of the query in Listing 2, you get
results like those in Listing 3.

Listing 3. Adding FOR XML AUTO to the query in Listing 2 produces this XML. (Only a few records are
shown.)

<Production.Product Name="Adjustable Race" />

<Production.Product Name="Thin-Jam Hex Nut 9" />
<Production.Product Name="Thin-Jam Hex Nut 10" />

Copyright 2014, Tamar E. Granor Page 4 of 51

Go Beyond VFP's SQL with SQL Server

<Production.Product Name="Seat Post" />

<Production.Product Name="Headset Ball Bearings" />

Using FOR XML RAW, instead, produces one element of type <row> for each record, with
each field included as an attribute. Listing 4 shows the first few records of the result.

Listing 4. FOR XML RAW produces simpler XML.

<row PurchaseOrderID=
<row PurchaseOrderID=
<row PurchaseOrderID=
<row PurchaseOrderID=

Name="Adjustable Race" />
Name="Thin-Jam Hex Nut 9" />
Name="Thin-Jam Hex Nut 10" />
Name="Seat Post" />

ny
no
no
ng
A third version, FOR XML EXPLICIT, gives you tremendous control over the format of the
output, at the cost of writing a more complex query. The details are beyond the scope of
this session, and the documentation indicates that you can do the same things using FOR
XML PATH much more easily. However, if you're interested, see
http://technet.microsoft.com/en-us/library/ms189068.aspx.

The fourth version of FOR XML, using the PATH keyword, provides what we need to
consolidate the product data into a single record. FOR XML PATH treats columns as XPath
expressions. XPath, which stands for XML Path language, lets you select items in an XML
document. Again, the full details are beyond the scope of this article.

What you need to know to solve the problem of creating a comma-separated list is that if
you specify FOR XML PATH(""), the expression you specify in the query is consolidated into
a single list, rather than one record per value. For example, the query in Listing 5 produces
the results shown in Listing 6.

Listing 5. Use FOR XML PATH(") to combine data into a single string.

SELECT ', ' + Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 7
ORDER BY Name
FOR XML PATH('')

Listing 6. The query in Listing 5 produces a single string.
, HL Crankarm, LL Crankarm, ML Crankarm

The query here assembles the list for a single purchase order, due to the WHERE clause.
The ORDER BY clause makes sure the products are listed in alphabetical order.

Copyright 2014, Tamar E. Granor Page 5 of 51

http://technet.microsoft.com/en-us/library/ms189068.aspx

Go Beyond VFP's SQL with SQL Server

The field list in this case must either be an expression, as in the example, or must include
the clause: AS "Data()". Otherwise, you get XML rather than a simple list. Since you'll
usually want some punctuation between items, this isn’t a particularly onerous restriction.

However, the query in Listing 5 doesn’t deal with duplicate products in a single order. To
demonstrate, specify 4008 as the purchase order ID to match rather than 7 (because order
4008 has a couple of duplicate products). When you do so, you get the result shown in
Listing 7. (I've added line breaks to make it more readable; the actual result is one long
string with no breaks. Note also that the product names include commas, so it might
actually be better to separate the items with something else, perhaps semi-colons.)

Listing 7. The query in Listing 5 doesn’t remove duplicates.

, Classic Vest, L, Classic Vest, L, Classic Vest, M, Classic Vest, M,

Classic Vest, M, Classic Vest, S, Full-Finger Gloves, L, Full-Finger Gloves, M,
Full-Finger Gloves, S, Half-Finger Gloves, L, Half-Finger Gloves, M,
Half-Finger Gloves, S, Women's Mountain Shorts, L, Women's Mountain Shorts, M,
Women's Mountain Shorts, S

To remove the duplicates, we need to use a derived table within this query, as in Listing 8.
The derived table extracts the list of distinct product names for the purchase order and
then the main query can sort them. [use the derived table because using requires the
field(s) listed in the ORDER BY clause to be included in the SELECT list; in this case, we're
sorting by Name, but the SELECT list includes only the expression (', ' + Name). (You could
in fact, do this without the derived table by using ", " + Name in the ORDER BY clause, but I
think the derived table version is more readable.)

Listing 8. To have only distinct product names and be able to sort them requires a derived table.

SELECT ', ' + Name

FROM (SELECT DISTINCT Name

FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A

On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 4008) DistNames
ORDER BY Name

FOR XML PATH('')

Listing 9 shows the results of the query in Listing 8. As before, they’ve been reformatted
for readability.

Listing 9. With the more complex query in Listing 8, the results don’t include duplicates.

, Classic Vest, L, Classic Vest, M, Classic Vest, S, Full-Finger Gloves, L,
Full-Finger Gloves, M, Full-Finger Gloves, S, Half-Finger Gloves, L,
Half-Finger Gloves, M, Half-Finger Gloves, S, Women's Mountain Shorts, L,
Women's Mountain Shorts, M, Women's Mountain Shorts, S

The next issue is the leading comma in the result. To remove it, we use the STUFF()
function , which is identical to the VFP STUFF() function. It replaces part of a string with

Copyright 2014, Tamar E. Granor Page 6 of 51

Go Beyond VFP's SQL with SQL Server

another string. In this case, we want to replace the first two characters with the empty
string.

However, you don’t put the STUFF() function quite where you might expect. It has to wrap
the entire query that produces the list. Listing 10 shows the query that produces the list
without the leading comma. Note that the query inside STUFF() has to be wrapped with
parentheses, just like a derived table. (The opening parenthesis is before the keyword
SELECT, while the closing parenthesis follows the XML PATH(") clause. That's followed by
the additional parameters for STUFF().) Here, though, the subquery isn’t a derived table;
it's a computed field.

Listing 10. To remove the leading comma on the list, we wrap the whole query with STUFF().

SELECT STUFF((SELECT ', ' + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 7) DistNames
ORDER BY Name
FOR XML PATH('')), 1, 2, '")

We now have all the pieces we need to produce results analogous to those in Figure 1. In
the outer query, we simply need to include the purchase order’s ID. Listing 11 shows the
query and Figure 2 shows part of the result, as displayed in SQL Server Management
Studio (SSMS).

Listing 11. Combining the query from Listing 10 with code to include the purchase order number gives us
the desired results.

SELECT PurchaseOrderID,
STUFF((SELECT ', ' + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE Purchasing.PurchaseOrderDetail.PurchaseOrderID = A.PurchaseOrderID) DistName
ORDER BY Name
FOR XML PATH('')), 1, 2, '') OrderProducts
FROM Purchasing.PurchaseOrderDetail
GROUP BY PurchaseOrderID
ORDER BY 1

Copyright 2014, Tamar E. Granor Page 7 of 51

Go Beyond VFP's SQL with SQL Server

. OrderProducts

Adjustable Race

" Thin-Jam Hex Nut 10, Thin-Jam Hex Nut 9

Seat Post

Headset Ball Bearings

HL Road Rim

Touring Rim

HL Crankarm, LL Crankarm, ML Crankarm

External Lock Washer 3. External Lock Washer 4, ...
Thin-Jam Lock Nut 1, Thin-Jam Lock Nut 10, Thin-._.
10 10 Chainring, Chainring Bolts, Chainring Nut

11 11 Lock Nut 16, Lock Nut 17, Lock Nut 5, Lock Nut 6
12 12 Touring Pedal

13 13 Chainring, Chainring Bolts, Chainring Nut

=BT S B P R L B

©
w

Figure 2. The query in Listing 11 produces this result.
This solution is included in the materials for this session as RollupOrdersForXML.sql.

Using a function

The second approach to producing the desired list uses a function that consolidates the list
of products. The downside of this approach is that you either have to have the function in
the database, or create it on the fly and then drop it afterward. If you need the comma-
separated list of products regularly, of course, there’s really no reason not to add the
function to the database.

The secret here is that the function accumulates the list in a variable, which it then returns
to the main query. VFP doesn’t allow you to store query results to a variable, but SQL
Server does, using the syntax in Listing 12. You can even assign results to multiple
variables in a single query. The variables must be declared before the query.

Listing 12. SQL Server lets you store a query result into a variable.

SELECT @VarName = <expression>
FROM <rest of query>

To create the comma-separated list, the expression on the right-hand side of the equal sign
references the variable on the left-hand side. The code in Listing 13 shows how to do this
for a single purchase order. To display the results in SSMS, add SELECT @Products at the
end of the code block.

Listing 13. The ability to store a query result in a variable provides a way to accumulate the list of products
for a single purchase order.

DECLARE @Products VARCHAR(1000)

SELECT @Products = COALESCE(@Products + ',"', '') + Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 7
ORDER BY Name

Copyright 2014, Tamar E. Granor Page 8 of 51

Go Beyond VFP's SQL with SQL Server

The COALESCE() function accepts a list of expressions and returns the first one with a non-
null value. Since @Products is initially null (because it’s not given an initial value), on the
first record, COALESCE() chooses the empty string and the result doesn’t have a leading
comma.

As in the FOR XML PATH case, the query here doesn’t remove duplicates. The solution is
the same here; use a derived query to produce the list of distinct products before
combining them. (In this case, you need the derived table; there’s not a way to collect
distinct product names without it.) Listing 14 shows the code that produces a sorted list of
distinct products for one purchase order.

Listing 14. To include each product only once in the list, we again use a derived query inside the query that
assembles the comma-separated list.

DECLARE @Products VARCHAR(1000)

SELECT @Products = COALESCE(@Products + ',', '') + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 4008) DistNames
ORDER BY Name

We can use this code in a function to return the rolled-up list for a single purchase order.
The main query calls the function for each purchase order. Listing 15 shows the full code
for this solution. Note that it creates the function, uses it and then drops it. As noted earlier,
if you're going to do this regularly, just create the function once and keep it.

Listing 15. This solution to getting a comma-separated list of values from multiple records uses a function
that rolls up the products for a single order.

CREATE FUNCTION ProductList (@POId INT)
RETURNS VARCHAR(1000)
AS

BEGIN
DECLARE @Products VARCHAR(1000)

SELECT @Products = COALESCE(@Products + ',"', '') + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = @POId) DistNames
ORDER BY Name

RETURN @Products
END

g0

SELECT DISTINCT PurchaseOrderID, dbo.productList(PurchaseOrderID)
AS ProductlList

Copyright 2014, Tamar E. Granor Page 9 of 51

Go Beyond VFP's SQL with SQL Server

FROM Purchasing.PurchaseOrderDetail
go

DROP FUNCTION dbo.ProductList
GO

Using DISTINCT in the main query ensures that we see each purchase order only once;
otherwise, each would appear once for each included product.

This solution is included in the materials for this session as RollupOrdersByFunction.sql.

Which one?

Given two solutions, which one should you use? In my tests, the FOR XML PATH solution
seems to be faster. However, the dataset in AdventureWorks is fairly small, so may not
provide a good test bed. I recommend testing both solutions against your actual data.

If you find no significant difference in execution, then use the one that you find easier to
read and comprehend, since you're likely to have to revisit it at some point.

Handle self-referential hierarchies

Relational databases handle typical hierarchical relationships very well. When you have
something like customers, who place orders, which contain line items, representing
products sold, any relational database should do. You create one table for each type of
object and link them together with foreign keys.

Reporting on such data is easy, too. Fairly simple SQL queries let you collect the data you
want with a few joins and some filters.

But some types of data don’t lend themselves to this sort of model. For example, the
organization chart for a company contains only people, with some people managed by
other people, who might in turn be managed by other people. Clearly, records for all people
should be contained in a single table.

But how do you represent the manager relationship? One commonly used approach is to
add a field to the person’s record that points to the record (in the same table) for his or her
manager.

From a data-modeling point of view, this is a simple solution. However, reporting on such
data can be complex. How do you trace the hierarchy from a given employee through her
manager to the manager’s manager and so on up the chain of command? Given a manager,
how do you find everyone who ultimately reports to that person (that is, reports to the
person directly, or to someone managed by that person, or to someone managed by
someone who is managed by that person, and so on down the line)?

Well look at two approaches to dealing with this kind of data, and show how much easier it
is to get what you want in SQL Server than in VFP.

Copyright 2014, Tamar E. Granor Page 10 of 51

Go Beyond VFP's SQL with SQL Server

The traditional solution

As described above, the traditional way to handle this type of hierarchy is to add a field to
identify a record’s parent (such as an employee’s manager). For example, the Northwind
database has a field in the Employees table called ReportsTo. It contains the primary key of
the employee’s manager; since that’s also a record in Employees, the table is self-
referential.

The AdventureWorks 2008 sample database for SQL Server doesn’t have this kind of
relationship because it uses the second approach to hierarchies, discussed in “Using the
HierarchylID type,” later in this paper. However, the 2005 version of the database has a set-
up quite similar to the one in Northwind. The Employee table has a ManagerID field that
contains the primary key (in Employee) of the employee’s manager.

Using the VFP Northwind and SQL Server AdventureWorks 2005 databases, let’s try to
answer some standard questions about an organization chart.

Who manages an employee?

In both cases, determining the manager of an individual employee is quite simple. It just
requires a self-join of the Employee table. That is, you use two instances of the Employee
table, one to get the employee and one to get the manager. Listing 16 (EmpPlusMgr.PRG in
the materials for this session) shows the VFP version of the query that retrieves this data
for a single employee (by specifying the employee’s primary key; 4, in this case).

Listing 16. Use a self-join to connect an employee with his or her manager.

SELECT Emp.FirstName AS EmpFirst, ;
Emp.LastName AS EmplLast, ;
Mgr.FirstName AS MgrFirst, ;
Mgr.LastName AS MgrLast ;

FROM Employees Emp ;
JOIN Employees Mgr
ON Emp.ReportsTo Mgr.EmployeelD ;
WHERE Emp.EmployeeID = 4 ;
INTO CURSOR csrEmpAndMgr

oI e

The AdventureWorks version of the same task is a little more complex, because the
database has a separate table for people (called Contact). The Employee table uses a
foreign key to Contact to identify the individual; Employee contains only the data related to
employment. So extracting an employee’s name requires joining Employee to Contact.

The solution still uses a self-join on the Employee table, but now it also requires two
instances of the Contact table. Listing 17 (EmpPlusMgr.SQL in the materials for this
session) shows the SQL Server query to retrieve the employee’s name and his or her
manager’s name. Again, we retrieve data for a single employee (by specifying
EmployeelD=37).

Copyright 2014, Tamar E. Granor Page 11 of 51

Go Beyond VFP's SQL with SQL Server

Listing 17. The SQL Server version of the query is a little more complex, due to additional normalization, but
still uses a self-join.

SELECT EmpContact.FirstName AS EmpFirst,
EmpContact.LastName AS EmpLast,
MgrContact.FirstName AS MgrFirst,
MgrContact.LastName AS MgrlLast

FROM Person.Contact EmpContact
JOIN HumanResources.Employee Emp
ON Emp.ContactID = EmpContact.ContactID
JOIN HumanResources.Employee Mgr
ON Emp.ManagerID = Mgr.EmployeeID
JOIN Person.Contact MgrContact
ON Mgr.ContactID MgrContact.ContactID
WHERE Emp.EmployeeID = 37

It’s easy to extend these queries to retrieve the names of all employees with each one’s
manager. Just remove the WHERE clause from each query.

What'’s the management hierarchy for an employee?

Things start to get more interesting when you want to trace the whole management
hierarchy for an employee. That is, given a particular employee, retrieve the name of her
manager and of the manager’s manager and of the manager’s manager’s manager and so on
up the line until you reach the person in charge.

Since we don’t know how many levels we might have, rather than putting all the data into a
single record, here we create a cursor with one record for each level. The specified
employee comes first, and then we climb the hierarchy so that the big boss is last.

VFP’s SQL alone doesn’t offer a solution for this problem. Instead, you need to combine a
little bit of SQL with some Xbase code, as in Listing 18. (This program is included in the
materials for this session as EmpHierarchy.PRG.)

Listing 18. To track a hierarchy to the top in VFP calls for a mix of SQL and Xbase code.
* Start with a single employee and create a

* hierarchy up to the top dog.

LPARAMETERS iEmpID

LOCAL iCurrentID , ilLevel

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR EmpHierarchy ;
(cFirst C(15), clLast C(20) , ilLevel I)

USE Employees IN © ORDER EmployeelD

iCurrentID = iEmpID
ilevel =1

DO WHILE NOT EMPTY(iCurrentID)

Copyright 2014, Tamar E. Granor Page 12 of 51

Go Beyond VFP's SQL with SQL Server

SEEK iCurrentID IN Employees

INSERT INTO EmpHierarchy ;
VALUES (Employees.FirstName, ;
Employees.LastName, ;
m.iLevel)

iCurrentID = Employees.ReportsTo
ilevel = m.iLevel + 1
ENDDO

USE IN Employees
SELECT EmpHierarchy

The strategy is to start with the employee you're interested in, insert her data into the
result cursor, then grab the PK for her manager and repeat until you reach an employee
whose manager field is empty. Figure 3 shows the results when you pass 7 as the
parameter.

Emphierarchy o] 3]
Cfirst Clast Ilevel -
Robert King 1
Steven Buchanan 2

M |[Andrew Fuller 3

K :

Figure 3. Running the query in Listing 18, passing 7 as the parameter, gives these results.

SQL Server provides a simpler solution, by using a Common Table Expression (CTE). A CTE
is a query that precedes the main query and provides a result that is then used in the main
query. While similar to a derived table, CTEs have a couple of advantages.

First, the result can be included multiple times in the main query (with different aliases). A
derived table is created in the FROM clause; if you need the same result again, you have to
include the whole definition for the derived table again.

Second, and relevant to this problem, a CTE can have a recursive definition, referencing
itself. That allows it to walk a hierarchy.

Listing 19 shows the structure of a query that uses a CTE. (It's worth noting that a single
query can have multiple CTEs; just separate them with commas.)

Listing 19. The definition for a CTE precedes the query that uses it.

WITH CTEAlias(Fieldl, Field2, ...)
AS

(

Copyright 2014, Tamar E. Granor Page 13 of 51

Go Beyond VFP's SQL with SQL Server

SELECT <fieldlist>
FROM <tables>

)
SELECT <main fieldlist>

FROM <main query tables>

The query inside the parentheses is the CTE; its alias is whatever you specify in the WITH
line. The WITH line also must contain a list of the fields in the CTE, though you don’t
indicate their types or sizes.

The main query follows the parentheses and presumably includes the CTE in its list of
tables and some of the CTE’s fields in the field list or the WHERE clause.

For example, the query in Listing 8 could instead use a CTE as in Listing 20, which is
included in the materials for this session as SimpleCTE.SQL.

Listing 20. You can usually replace a derived table with a CTE.

WITH DistNames (Name) AS
(SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail As A
On Production.Product.ProductID = A.ProductID
WHERE A.PurchaseOrderID = 4008)

SELECT ', ' + Name
FROM DistNames
ORDER BY Name
FOR XML PATH('")

For a recursive CTE, you combine two queries with UNION ALL. The first query is an
"anchor"; it provides the starting record or records. The second query references the CTE
itself to drill down recursively.

A recursive CTE continues drilling down until the recursive portion returns no records.

Listing 21 shows a query that produces the management hierarchy for the employee
whose EmployeelD is 37. (Just change the assignment to @iEmpID to specify a different
employee.) The query is included in the materials for this session as
EmpHierarchyViaCTE.SQL.

Listing 21. To retrieve the management hierarchy for an employee in the SQL Server AdventureWorks 2005
database, use a Common Table Expression.

DECLARE @iEmpID INT = 37;

WITH EmpHierarchy (
FirstName, LastName, ManagerID, EmpLevel)
AS

(

Copyright 2014, Tamar E. Granor Page 14 of 51

Go Beyond VFP's SQL with SQL Server

SELECT Contact.FirstName, Contact.LastName,
Employee.ManagerID, 1 AS EmplLevel
FROM Person.Contact
JOIN HumanResources.Employee
ON Employee.ContactID =
Contact.ContactID
WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Contact.FirstName, Contact.LastName,
Employee.ManageriID,
EmpHierarchy.EmpLevel + 1 AS EmpLevel
FROM Person.Contact
JOIN HumanResources.Employee
ON Employee.ContactID = Contact.ContactID
JOIN EmpHierarchy
ON Employee.EmployeeID = EmpHierarchy.ManagerID

)

SELECT FirstName, LastName, EmpLevel
FROM EmpHierarchy

The alias for the CTE here is EmpHierarchy. The anchor portion of the CTE selects the
specified person (WHERE EmployeelD = @iEmpID), including that person’s ManagerID in
the result and setting up a field to track the level in the database.

The recursive portion of the query joins the Employee table to the EmpHierarchy table-in-
progress (that is, the CTE itself), matching the ManagerID from EmpHierarchy to
Employee.EmployeelD. It also increments the EmpLevel field, so that the first time it
executes, EmpLevel is 2, the second time, it’s 3, and so forth.

Once the CTE is complete, the main query pulls the desired information from it. Figure 4
shows the result of the query in Listing 21.

FirstName LastName EmplLevel

. Rapier 1
Dobney 2
Krebs 3
Hamilton 4
5

Sanchez

Figure 4. The query in Listing 21 returns one record for each level of the management hierarchy for the
specified employee.

Who does an employee manage?

The problem gets a little tougher, at least on the VFP side, when we want to put together a
list of all employees a particular person manages at all levels of the hierarchy. That is, not
only those she manages directly, but people who report to those people, and so on down
the line.

To make the results more meaningful, we want to include the name of the employee’s
direct manager in the results.

Copyright 2014, Tamar E. Granor Page 15 of 51

Go Beyond VFP's SQL with SQL Server

What makes this difficult in VFP is that at each level, we may (probably do) have multiple
employees. We need not only to add each to the result, but to check who each of them
manages. That means we need some way of keeping track of who we’ve checked and who

we haven't.

We use two cursors. One (MgrHierarchy) holds the results, while the other

(EmpsToProcess) holds the list of people to check. Listing 22 shows the code; it’s called

MgrHierarchy.PRG in the materials for this session.

Listing 22. Putting together the list of people a specified person manages directly or indirectly is harder than

climbing up the hierarchy.

* Start with a single employee and determine
* all the people that employee manages,

* directly or indirectly.

LPARAMETERS iEmpID

LOCAL iCurrentID, ilLevel, cFirst, clLast,
LOCAL nCurRecNo, cMgrFirst, cMgrlLast

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR MgrHierarchy ;
(cFirst C(15), clLast C(20), iLevel I, ;
cMgrFirst C(15), cMgrLast C(15))

CREATE CURSOR EmpsToProcess ;
(EmployeeID I, cFirst C(15), clLast C(20), ;
iLevel I, cMgrFirst C(15), cMgrlLast C(15))

INSERT INTO EmpsToProcess ;
SELECT m.iEmpID, FirstName, LastName, 1, "", "" ;
FROM Employees ;
WHERE EmployeeID = m.iEmpID

SELECT EmpsToProcess

SCAN
iCurrentID = EmpsToProcess.EmployeelD
ilLevel = EmpsToProcess.ilevel
cFirst = EmpsToProcess.cFirst
cLast = EmpsToProcess.clLast
cMgrFirst = EmpsToProcess.cMgrFirst
cMgrLast = EmpsToProcess.cMgrLast

* Insert this records into result
INSERT INTO MgrHierarchy ;
VALUES (m.cFirst, m.cLast, m.iLevel, m.cMgrFirst, m.cMgrLast)

* Grab the current record pointer
nCurRecNo = RECNO("EmpsToProcess")

INSERT INTO EmpsToProcess ;

SELECT EmployeeID, FirstName, LastName, m.iLevel + 1, m.cFirst, m.clLast ;

Copyright 2014, Tamar E. Granor

Page 16 of 51

Go Beyond VFP's SQL with SQL Server

FROM Employees ;
WHERE ReportsTo = m.iCurrentID

* Restore record pointer
GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

To kick the process off, we add a single record to EmpsToProcess, with information about
the specified employee. Then, we loop through EmpsToProcess, handling one employee at
a time. We insert a record into MgrHierarchy for that employee, and then we add records to
EmpsToProcess for everyone directly managed by the employee we’re now processing.

The most interesting bit of this code is that the SCAN loop has no problem with the cursor
we’re scanning growing as we go. We just have to keep track of the record pointer, and
after adding records, move it back to the record we’re currently processing.

Figure 5 shows the result cursor when you pass 2 as the employee ID.

[Marhierarchy = o ="
cfirst Cclast Ilevel Cmgrfirst Cmgrlast =
Andrew ;Fuller 1
Nancy Davolio 2 Andrew Fuller
Janet Leverling 2 Bndrew Fuller
Margaret Peacock 2 Bndrew Fuller
Steven :Buchanan 2 Andrew Fuller
Laura Callahan 2 Bndrew Fuller
Michael | Suyama 3 Steven Buchana
Robert King 3 S5teven Buchana

:Dodswort 3 Steven Buchana |

|- ' 3

Figure 5. When you specify an EmployeelD of 2, you get all the Northwind employees.

In fact, you can do this with a single cursor that represents both the results and the list of
people yet to check, but doing so makes the code a little confusing.

In SQL Server, solving this problem is no harder than solving the upward hierarchy. Again,
we use a CTE, and all that really changes is the join condition in the recursive part of the
CTE. (Because we want the direct manager’s name, the field list is slightly different, as
well). Listing 23 shows the query (MgrHierarchyViaCTE.SQL in the materials for this
session), along with a variable declaration to indicate which employee we want to start
with; Figure 6 shows the results for this example.

Listing 23. Walking down the hierarchy of employees is no harder in SQL Server than climbing up.
DECLARE @iEmpID INT = 3;
WITH EmpHierarchy

(FirstName, LastName, EmployeelD, EmpLevel, MgrFirst, MgrlLast)
AS

(

Copyright 2014, Tamar E. Granor Page 17 of 51

Go Beyond VFP's SQL with SQL Server

SELECT Contact.FirstName, Contact.LastName,
Employee.EmployeeID, 1 AS EmpLevel,
CAST('' AS NVARCHAR(50)) AS MgrFirst
CAST('"' AS NVARCHAR(50)) AS MgrlLast

FROM Person.Contact
JOIN HumanResources.Employee
ON Employee.ContactID = Contact.ContactID
WHERE EmployeeID = @iEmpID

UNION ALL

SELECT Contact.FirstName, Contact.LastName,
Employee.EmployeelD,
EmpHierarchy.EmpLevel + 1 AS EmplLevel,
EmpHierarchy.FirstName AS MgrFirst,
EmpHierarchy.LastName AS MgrlLast

FROM Person.Contact
JOIN HumanResources.Employee
ON Employee.ContactID = Contact.ContactID
JOIN EmpHierarchy
ON Employee.ManagerID = EmpHierarchy.EmployeeID

)
SELECT FirstName, LastName, EmplLevel,
MgrFirst, MgrlLast
FROM EmpHierarchy

FirsiName LastName Emplevel MgrFirst Mgrlast

R Tamburello 1

"Rob ' Walters 2 Roberto Tamburello
Gail Erickson 2 Roberto Tamburello
Jossef Goldberg 2 Roberto Tamburello
Dylan Miller 2 Roberto Tamburello
Ovidiu Cracium 2 Roberto Tamburello
Michael Sullivan 2 Roberto Tamburello
Sharon Salavaria 2 Roberto Tamburello
Thierry D'Hers 3 Ovidiu Cracium
Janice Galvin 3 Ovidiu Cracium
Diane Margheim 3 Dylan Miller

Gigi Matthew 3 Drylan Miller
Michael Raheem 3 Dylan Miller

Figure 6. These are the people managed by Roberto Tamburello, whose EmployeelD is 3.

Using the HierarchylD type

SQL Server 2008 introduced a new way to handle this kind of hierarchy. A new data type
called HierarchyID encodes the path to any node in a hierarchy into a single field; a set of
methods for the data type make both maintaining and navigating straightforward. (The
idea of a data type with methods is unusual. Think of the data type as essentially a class
that you can use as a field.)

The SQL Server 2008 version of AdventureWorks uses the HierarchyID type to handle the
management hierarchy (which is why we couldn’t use it for the earlier examples). There
are other changes, as well. AdventureWorks 2008 is even more normalized than the 2005

Copyright 2014, Tamar E. Granor Page 18 of 51

Go Beyond VFP's SQL with SQL Server

version; a new BusinessEntity table contains information about people (including
employees) and businesses. So, instead of an EmployeelD, each employee now has a
BusinessEntityID. In addition, the Contact table has been renamed Person. However,
there’s still a relationship between that table and the Employee table that we can use to
retrieve an employee’s name.

HierarchylD essentially creates a string that shows the path from the root (top) of the
hierarchy to a particular record. The root node is indicated as "/"; then, at each level, a
number indicates which child of the preceding node is in this node’s hierarchy. So, for
example, a hierachyID of "/4/3/" means that the node is descended from the fourth child of
the root node, and is the third child of that child. However, HierarchyIDs are actually stored
in a binary string created from the plain text version.

The HierarchyID type has a set of methods that allow you to easily navigate the hierarchy.
First, the ToString method converts the encoded hierarchy ID to a string in the form shown
above. Listing 24 (ShowHierarchyID.SQL in the materials for this session) shows a query
to extract the name and hierarchy ID, both in encoded and plain text form, of the
AdventureWorks employees; Figure 7 shows a portion of the result.

Listing 24.The ToString method of the HierarchyID type converts the hierarchy ID into a human-readable
form.

SELECT Person.[BusinessentityID]
,[OrganizationNode]
,[OrganizationNode].ToString()
,[OrganizationLevel]
, FirstName
, LastName
FROM [HumanResources].[Employee]
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID

BusinessEntitylD OrganizationNo... (No column na... OrganizationLe... FirstName LastName
Ox i 0 Ken Sanchez
2 =58 ni 1 Terri Duffy
16 0x65 12/ 1 David Bradley
25 078 137 1 James Hamilton
234 Ox54 4/ 1 Laura Norman
263 0xBC 5/ 1 Jean Trenary
273 =94 ref 1 Brian Welcker
3 Ox5ACO nins 2 Roberto Tamburello
17 O=BACO F2ny 2 Kevin Brown
18 O=<6B40 raraf 2 John Wood

Figure 7. The unnamed column here shows the text version of the OrganizationNode column.

To move through the hierarchy, we use the GetAncestor method. As you’d expect,
GetAncestor returns an ancestor of the node you apply it to. A parameter indicates how
many levels up the hierarchy to go, so GetAncestor(1) returns the parent of the node.

Copyright 2014, Tamar E. Granor Page 19 of 51

Go Beyond VFP's SQL with SQL Server

That’s actually all we need to retrieve the management hierarchy for a particular employee.
As in the earlier example, we use a CTE to handle the recursive requirement. Listing 25
shows the query; it’s included in the materials for this session as
EmpHierarchyWithHierarchyID.SQL.

Listing 25. Retrieving the management hierarchy for a given employee when using the HierarchyID data type
isn’t much different from doing it with a "reports to" field.

DECLARE @iEmpID INT = 40;

WITH EmpHierarchy (FirstName, LastName, OrganizationNode, EmpLevel)
AS
(
SELECT Person.FirstName, Person.LastName,
Employee.OrganizationNode, 1 AS EmpLevel
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
Employee.OrganizationNode, EmpHierarchy.EmpLevel + 1 AS EmplLevel
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
JOIN EmpHierarchy
ON Employee.OrganizationNode

EmpHierarchy.OrganizationNode.GetAncestor(1)

)

SELECT FirstName, LastName, EmpLevel
FROM EmpHierarchy

The big difference between this query and the earlier query is in the join between
Employee and EmpHierarchy. Rather than matching fields directly, we call GetAncestor to
retrieve the hierarchy for a node’s parent and compare that to the Employee table’s
OrganizationNode field.

As in the earlier examples, finding everyone an employee manages uses a very similar
query, but in the join condition between Employee and EmpHierarchy, we apply
GetAncestor to the field from Employee. Listing 26 (MgrHierarchyWithHierarchyID.SQL in
the materials for this session) shows the code.

Listing 26. To find everyone an individual manages using HierarchylID, just change the direction of the join
between Employee and EmpHierarchy.

DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
(FirstName, LastName, BusinessEntityID,
EmpLevel, MgrFirst, MgrLast, OrgNode)
AS
(

Copyright 2014, Tamar E. Granor Page 20 of 51

Go Beyond VFP's SQL with SQL Server

SELECT Person.FirstName, Person.LastName,
Employee.BusinessEntityID, 1 AS EmpLevel,
CAST("'"' AS NVARCHAR(50)) AS MgrFirst,
CAST('' AS NVARCHAR(50)) AS MgrlLast,
OrganizationNode AS OrgNode
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
Employee.BusinessEntityID,
EmpHierarchy.EmpLevel + 1 AS EmplLevel,
EmpHierarchy.FirstName AS MgrFirst,
EmpHierarchy.LastName AS MgrlLast,
OrganizationNode AS OrgNode
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
JOIN EmpHierarchy
ON Employee.OrganizationNode.GetAncestor(1l) = EmpHierarchy.OrgNode

)

SELECT FirstName, LastName, EmpLevel, MgrFirst, MgrlLast
FROM EmpHierarchy

Setting up HierarchylDs

Populating a HierarchyID field turns out to be simple. You can specify the plain text version
and SQL Server will handle encoding it. You can also use the GetRoot and GetDescendant
methods to populate the field.

GetDescendant is particularly useful for inserting a child of an existing record. You call the
GetDescendant method of the parent record, passing parameters that indicate where the
new record goes among the children of the parent. A complete explanation of the method is
beyond the scope of this article, but Listing 27 shows code that creates a temporary table
and adds a few records, and then shows the results. This code is included in the materials
for this session as CreateHierarchy.SQL.

Listing 27. You can specify the hierarchyID value directly or use the GetRoot and GetDescendant methods.

CREATE TABLE #temp
(orgHier HIERARCHYID, NodeName CHAR(20))

INSERT INTO #temp
(orgHier, NodeName)
VALUES ('/', 'Root'))

DECLARE @Root HIERARCHYID,
@curNode HIERARCHYID
SELECT @Root = hierarchyID: :GetRoot()

INSERT INTO #temp

Copyright 2014, Tamar E. Granor Page 21 of 51

Go Beyond VFP's SQL with SQL Server

(orgHier, NodeName)
VALUES (@Root.GetDescendant(NULL, NULL),
"First child')

SELECT @curNode = MAX(orgHier)
FROM #temp
WHERE orgHier.GetAncestor(1l) = @Root

INSERT INTO #temp
(orgHier, NodeName)
VALUES (@curNode.GetDescendant(NULL, NULL),
'"First grandchild')

INSERT INTO #temp
(orgHier, NodeName)
VALUES (@Root.GetDescendant(@curNode, NULL),
'Second child')

SELECT orgHier, orgHier.ToString(),
NodeName
FROM #temp

DROP TABLE #temp

You'll find a good tutorial on the HierarchylID type, including a discussion of the methods, at
http://tinyurl.com/n6kk6jm.

What about VFP?

Obviously, VFP has no analogue of the HierarchyID data type. However, you can create your
own. Marcia Akins describes an approach to doing so in her paper "Modeling Hierachies,"
available at http://tightlinecomputers.com/Downloads.htm; scroll down near the bottom
of the page.

Of course, a home-grown version won'’t include the methods that SQL Server’s HierarchyID
type comes with. You'll have to write your own code to handle look-ups and insertions.

Get the top N from each group

Both VFP and SQL Server include the TOP n clause, which allows you to include in the
result only the first n records that match a query’s filter conditions. But TOP n doesn’t work
when what you really want is the TOP n for each group in the query.

Suppose a company wants to know its top five salespeople for each year in some period. In
VFP, you need to combine SQL with Xbase code or use a trick to get the desired results.
With SQL Server, you can do it with a single query.

The VFP solution

Collecting the basic data you need to solve this problem is straightforward. Listing 28
(EmployeeSalesByYear.PRG in the materials for this session) shows a query that provides
each employee’s sales by year; Figure 8 shows part of the results.

Copyright 2014, Tamar E. Granor Page 22 of 51

http://tinyurl.com/n6kk6jm
http://tightlinecomputers.com/Downloads.htm

Go Beyond VFP's SQL with SQL Server

Listing 28. Getting total sales by employee by year is easy in VFP.

SELECT FirstName, LastName, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice*Quantity) AS TotalSales ;
FROM Employees ;
JOIN Orders ;
ON Employees.EmployeeID = Orders.EmployeelD ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2, 3 ;
ORDER BY OrderYear, TotalSales DESC ;
INTO CURSOR csrEmployeeSalesByYear

Firstname Lastname Orderyear Totalsales

E‘eacock 1596 53114.8000
Nancy Davolio 19%¢ 38789.0000
Laura Callahan 1956 2316l1.4000
Andrew Fuller 15856 22834.7000
Steven Buchanan 19%¢ 21965.2000
Janet Leverling 19%¢6 1%231.8000
Robert King 1996 18104.8000
Michael : Suvama 19%¢6 17731.1000
Lnne Dodsworth 19%6 11365.7000
Margaret | Peacock 1957 135477.7000
Janet Leverling 15897 111788.6100

Figure 8. The query in Listing 28 produces the total sales for each employee by year.

However, when you want to keep only the top five for each year, you need to either
combine SQL code with some Xbase code or use a trick that can result in a significant
slowdown with large datasets.

SQL plus Xbase

The mixed solution is easier to follow, so let’s start with that one. The idea is to first select
the raw data needed, in this case, the total sales by employee by year. Then we loop
through on the grouping field, and select the top n (five, in this case) in each group and put
them into a cursor. Listing 29 (TopnEmployeeSalesByYear-Loop.PRG in the materials for
this session) shows the code; Figure 9 shows the result.

Listing 29. One way to find the top n in each group is to collect the data, then loop through it by group.

SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice*Quantity) AS TotalSales ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrEmpSalesByYear

CREATE CURSOR csrTopEmployeeSalesByYear ;
(FirstName C(10), LastName C(20), ;
OrderYear N(4), TotalSales Y)

Copyright 2014, Tamar E. Granor Page 23 of 51

Go Beyond VFP's SQL with SQL Server

SELECT distinct OrderYear ;
FROM csrEmpSalesByYear ;
INTO CURSOR csrYears

LOCAL nYear

SCAN
nYear = csrYears.OrderYear

INSERT INTO csrTopEmployeeSalesByYear ;
SELECT TOP 5 ;

FirstName, LastName, ;
OrderYear, TotalSales ;

FROM Employees ;
JOIN csrEmpSalesByYear ;

ON Employees.EmployeeID = csrEmpSalesByYear.EmployeelD ;

WHERE csrEmpSalesByYear.OrderYear = m.nYear ;

ORDER BY OrderYear, TotalSales DESC

ENDSCAN
USE IN csrYears

USE IN csrEmpSalesByYear
SELECT csrTopEmployeeSalesByYear

M Csrtopemployeesalesbyyear EI@
Firstname Lastname Orderyear Totalsales -
_. peacock 1956 53114.8000 |
] Nancy Davolio 1596 38785.0000
Laura Callahan 18%6 23161.4000
andrew Fuller 1996 22834.7000
Steven Buchanan 158%6 21865.2000
Margaret | Peacock 1997 139477.7000
Janet Leverling 15997 111788.6100
Nancy Davolio 1597 97533.5800
Endrew Fuller 1997 74558.6000
Robert King 1997 66689.1400
Janet Leverling 15998 82030.8500
Andrew Fuller 1998 795855.9600
Nancy Davolio 1598 £5821.1300
Margaret | Peacock 1598 57594.9500
Robert King 1998 56502.03500 L
|« »

Figure 9. The query in Listing 29 produces these results.

The first query is just a simpler version of Listing 28, omitting the Employees table and the
ORDER BY clause; both of those will be used later. Next, we create a cursor to hold the final
results. Then, we get a list of the years for which we have data. Finally, we loop through the
cursor of years and, for each, grab the top five salespeople for that year, and put them into
the result cursor, adding the employee’s name and sorting as we insert.

You can actually consolidate this version a little by turning the first query into a derived
table in the query inside the INSERT command. Listing 30 (TopnEmployeeSalesByYear-
Loop2.PRG in the materials for this session) shows the revised version. Note that you have

Copyright 2014, Tamar E. Granor Page 24 of 51

Go Beyond VFP's SQL with SQL Server

to get the list of years directly from the Orders table in this version. This version, of course,
gives the same results.

Listing 30. The code in Listing 29 can be reworked to use a derived table to compute the totals for each
year.

CREATE CURSOR csrTopEmployeeSalesByYear ;
(FirstName C(10), LastName C(20), ;
OrderYear N(4), TotalSales Y)

SELECT distinct YEAR(OrderDate) AS OrderYear ;
FROM Orders ;
INTO CURSOR csrYears

LOCAL nYear

SCAN
nYear = csrYears.OrderYear

INSERT INTO csrTopEmployeeSalesByYear ;
SELECT TOP 5 ;
FirstName, LastName, ;
OrderYear, TotalSales ;
FROM Employees ;
JOIN (;
SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice * Quantity) ;
AS TotalSales ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
WHERE YEAR(OrderDate) = m.nYear ;
GROUP BY 1, 2) csrEmpSalesByYear ;
ON Employees.EmployeeID = csrEmpSalesByYear.EmployeelD ;
ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
SELECT csrTopEmployeeSalesByYear

SQL-only

The alternative VFP solution uses only SQL commands, but relies on a trick of sorts. Like
the mixed solution, it starts with a query to collect the basic data needed. It then joins that
data to itself in a way that results in multiple records for each employee/year combination
and uses HAVING to keep only those that represent the top n records. Finally, it adds the
employee name. Listing 31 (TopNEmployeeSalesByYear-Trick.prg in the materials for this
session) shows the code.

Copyright 2014, Tamar E. Granor Page 25 of 51

Go Beyond VFP's SQL with SQL Server

Listing 31. This solution uses only SQL, but requires a tricky join condition.

SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice * Quantity) ;
AS TotalSales ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrEmpSalesByYear

SELECT FirstName, LastName, ;
OrderYear, TotalSales ;
FROM Employees ;
JOIN (;
SELECT ESBY1.EmployeelD, ;
ESBY1.OrderYear, ;
ESBY1l.TotalSales ;
FROM csrEmpSalesByYear ESBY1 ;
JOIN csrEmpSalesByYear ESBY2 ;
ON ESBY1l.0OrderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales <= ESBY2.TotalSales ;
GROUP BY 1, 2,3 ;
HAVING COUNT(*) <= 5) csrTop5;
ON Employees.EmployeeID = csrTop5.EmployeelD ;
ORDER BY OrderYear, TotalSales DESC ;
INTO CURSOR csrTopEmployeeSalesByYear

The first query here is just a variant of Listing 28. The key portion of this approach is the
derived table in the second query, in particular, the join condition between the two
instances of csrEmpSalesByYear, shown in Listing 32. Records are matched up first by
having the same year and then by having sales in the second instance be the same or more
than sales in the first instance. This results in a single record for the employee from that
year with the highest sales total, two records for the employee with the second highest
sales total and so on.

Listing 32. The key to this solution is the unorthodox join condition between two instances of the same table.

FROM csrEmpSalesByYear ESBY1 ;
JOIN csrEmpSalesByYear ESBY2 ;
ON ESBY1.0OrderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales <= ESBY2.TotalSales

The GROUP BY and HAVING clauses then combine all the records for a given employee and
year, and keeps only those where the number of records in the intermediate result is five or
fewer (that is, where the count of records in the group is five or less), providing the top five
salespeople for each year.

To make more sense of this solution, first consider the query in Listing 33 (included in the
materials for this session as TopNEmployeeSalesByYearBeforeGrouping.prg). It assumes
we've already run the query to create the EmpSalesByYear cursor. It shows the results

Copyright 2014, Tamar E. Granor Page 26 of 51

Go Beyond VFP's SQL with SQL Server

(plus a couple of additional fields) from the derived table in Listing 31 before the GROUP
BY is applied. In the partial results shown in Figure 10, you can see one record for
employee 4 in 1996, two for employee 1, three for employee 8 and so forth. The added
columns Emp2ID and EmpZ2Sales show which row in ESBY2 resulted in this result row. So,
for employee 4 in 1996, the only row that met the conditions was the one for employee 4 in
1996. For employee 1 in 1996, both employee 4 and itself met the conditions of total sales
the same or more than his or her own.

Listing 33. This query demonstrates the intermediate results for the derived table in Listing 31.

SELECT ESBY1.EmployeelD, ;
ESBY1l.OrderYear, ;
ESBY1l.TotalSales , ;
ESBY2.EmployeeID AS Emp2ID, ;
ESBY2.TotalSales AS Emp2Sales ;
FROM EmpSalesByYear ESBY1 ;
JOIN EmpSalesByYear ESBY2 ;
ON ESBY1.0rderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales <= ESBY2.TotalSales ;
ORDER BY ESBY1l.OrderYear, ESBY1l.TotalSales DESC ;
INTO CURSOR csrIntermediate

Employeeid Orderyear Totalsales Emp2id EmpZsales
1996 53114.8000 53114.8000

4
1 1956 38785.0000 1 38789.0000
1 1956 38785.0000 4 53114.8000
8 1556 231e1.4000 1 38785.0000
8 1556 23161.4000 4 53114.8000
8 1956 23161.4000 8 23161.4000
2 15956 22834.7000 1 38789.0000
2 15956 22834.7000 2 22834.7000
2 19%¢ 22834.7000 4 53114.8000
2 15956 22834.7000 8 23161.4000
5 1956 21965.2000 1 38785.0000
5 1556 215965.2000 2 22834.7000
5 1956 21965.2000 4 53114.8000
5 1956 21965.2000 5 21865.2000
5 1556 21965.2000 8 231e1.4000

Figure 10. The query in Listing 33 unfolds the data that’s grouped in the derived table.

The problem with this approach to the problem is that, as the size of the original data
increases, it can get bogged down. So while this solution has a certain elegance, in the long
run, a SQL plus Xbase solution is probably a better choice.

By the way, this example (the one in Listing 31) shows where CTEs (common table
expressions, explained earlier in this paper) would be useful in VFP’s SQL. We can'’t easily
combine the two queries into one because the second query uses two instances of the
EmpSalesByYear. If VFP supported CTEs, we could make the query that creates
EmpSalesByYear into a CTE, and then use it twice in the main query.

Copyright 2014, Tamar E. Granor Page 27 of 51

Go Beyond VFP's SQL with SQL Server

The SQL Server solution

Solving the top n by group problem in SQL Server uses a couple of CTEs, but also uses
another construct that’s not available in VFP’s version of SQL.

The OVER clause lets you apply a function to all or part of a result set; it’s used in the field
list. There are several variations, but the basic structure is shown in Listing 34.

Listing 34. The OVER clause lets you apply a function to all or some of the records in a query.

<function> OVER (<grouping and/or ordering>)

OVER lets you rank records, as well as applying aggregates to individual items in the field
list. In SQL Server 2012 and later, OVER has additional features that let you compute
complicated aggregates such as running totals and moving averages.

For the top n by group problem, we want to rank records within a group and then keep the
top n. To do that, we can use the ROW_NUMBER() function, which, as its name suggests,
returns the row number of a record within a group (or within the entire result set, if no
grouping is specified).

For example, Listing 35 (included in the materials for this session as
EmployeeOrderNumber.sql) shows a query that lists AdventureWorks (2008) employees
in the order they were hired, giving each an "employee order number." Here, the data is
ordered by HireDate and then ROW_NUMBER() is applied to provide the position of each
record. Figure 11 shows partial results.

Listing 35. Using ROW_NUMBER() with OVER lets you give records a rank.

SELECT FirstName, LastName, HireDate,
ROW_NUMBER() OVER (ORDER BY HireDate)
AS EmployeeOrderNumber
FROM HumanResources.Employee
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID

Copyright 2014, Tamar E. Granor Page 28 of 51

Go Beyond VFP's SQL with SQL Server

FirstName LastName HireDate EmployeeOrderNum...
Gw Gibort 5000.0731 | 1
g — 0010226 | 2
Roberto Tamburello 2001-12-12 3
Rob Walters 2002-01-05 4
Thierry D'Hers 2002-01-11 5
David Bradley 2002-01-20 6
JoLynn Dobney 2002-01-26 7
Ruth Ellerbrock 2002-02-06 &
Gail Erickson 2002-02-06 9
Barry Johnson 2002-02-07 10
Jossef Goldberg 2002-02-24 11
Terri Duffy 2002-03-03 12
Sidney Higa 2002-03-05 13
Taylor Maswell 2002-03-11 14

Figure 11. The query in Listing 35 applies a rank to each employee by hire date.

But look at Ruth Ellerbock and Gail Erickson; they have the same hire date, but different
values for EmployeeOrderNumber. Sometimes, that’s what you want, but sometimes, you
want such records to have the same value.

The ROW_NUMBER() funtion doesn’t know anything about ties. However, the RANK()
function is aware of ties and assigns them the same value, then skips the appropriate
number of values. Listing 36 (EmployeeRank.SQL in the materials for this session) shows
the same query using RANK() instead of ROW_NUMBER(); Figure 12 shows the first few
records. This time, you can see that Ellerbock and Erickson have the same rank, 8, while
Barry Johnson, who immediately follows them, still has a rank of 10.

Listing 36. The RANK() function is aware of ties, assigning them the same value.

SELECT FirstName, LastName, HireDate,
RANK() OVER (ORDER BY HireDate)
AS EmployeeOrderNumber
FROM HumanResources.Employee
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID

Copyright 2014, Tamar E. Granor Page 29 of 51

Go Beyond VFP's SQL with SQL Server

FirstName LastName HireDate EmployeeRank

Guy | Gilbert 2000-07-31

oin T Broun 0010206 | 2
Roberto Tamburello 2001-12-12 3
Rob Walters 2002-01-05 4
Thierry D'Hers 2002-01-11 5
David Bradley 2002-01-20 6
JoLynn Daobney 2002-01-26 7
Ruth Ellerbrock 2002-02-06 &
Gail Erickson 2002-02-06 8
Barry Johnson 2002-02-07 10
Jossef Goldberg 2002-02-24 11
Terri Duffy 2002-03-03 12
Sidney Higa 2002-03-05 13
Taylor Mepawell 2002-03-11 14

Figure 12. Using RANK() assigns the same EmployeeOrderNumber to records with the same hire date.

You can’t say that either ROW_NUMBER() or RANK() is right; which one you want depends
on the situation. In fact, there’s a third related function, DENSE_RANK() that behaves like
RANK(), giving ties the same value, but then continues numbering in order. That is, if we
used DENSE_RANK() in this example, Barry Johnson would have a rank of 9, rather than 10.

Partitioning with OVER

In addition to specifying ordering, OVER also allows us to divide the data into groups
before applying the function, using the PARTITION BY clause. The query in Listing 37
(included in the materials for this session as EmployeeRankByDept.sql) assigns employee
ranks within each department rather than for the company as a whole by using both
PARTITION BY and ORDER BY. Figure 13 shows partial results; note that the numbering
begins again for each department and that ties are assigned the same rank.

Listing 37. Combining PARTITION BY and ORDER BY in the OVER clause lets you apply ranks within a group.

SELECT FirstName, LastName, StartDate,
Department.Name,
RANK() OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate)
AS EmployeeRank
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory
ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
JOIN HumanResources.Department
ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE EndDate IS null

Copyright 2014, Tamar E. Granor Page 30 of 51

Go Beyond VFP's SQL with SQL Server

Name LastName StartDate Name EmployeeRank

: Tamburello 2001-12-12 Engineering

1

Erickson 2002-02-06 Engineering 2

Jossef Goldberg 2002-02-24 Engineering 3
Terri Duffy 2002-03-03 Engineering 4
Michael Sullivan 2005-01-30 Engineering 5
Sharon Salavaria 2005-02-18 Engineering 6
Thierry D'Hers 2002-01-11 Tool Design 1
Rob Walters 2004-07-01 Tool Design 2
Ovidiu Cracium 2005-01-05 Tool Design 3
Janice Galvin 2005-01-23 Tool Design 4
Stephen Jiang 2005-02-04 Sales 1
Brian Welcker 2005-03-18 Sales 2
Michael Blythe 2005-07-01 Sales 3
Linda Mitchell 2005-07-01 Sales 3
Jillian Carson 2005-07-01 Sales 3

Figure 13. Here, employees are numbered within their current department, based on when they started in
that department.

This example should provide a hint as to how we’ll solve the top n by group problem, since
we now have a way to number things by group. All we need to do is filter so we only keep
those whose rank within the group is in the range of interest. However, it’s not possible to
filter on the computed field EmployeeOrderNumber in the same query. Instead, we turn
that query into a CTE and filter in the main query, as in Listing 38
(LongestStandingEmployeesByDept.sql in the materials for this session).

Listing 38. Once we have the rank for an item within its group, we just need to filter to get the top n items by
group.

WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
Department.Name AS Department,
RANK() OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate)
AS EmployeeRank
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory
ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
JOIN HumanResources.Department
ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE EndDate IS NULL)

SELECT FirstName, LastName, StartDate, Department
FROM EmpRanksByDepartment
WHERE EmployeeRank <= 3
ORDER BY Department, StartDate

Figure 14 shows part of the result. Note that there are many more than three records for
the Sales department because a whole group of people started on the same day. If you
really want only three per department and don’t care which records you omit from a last-
place tie, use RECORD_NUMBER() instead of RANK().

Copyright 2014, Tamar E. Granor Page 31 of 51

Go Beyond VFP's SQL with SQL Server

Diane Margheim 2003-01-30 Research and Developm...
Gigi Matthew 2003-02-17 Research and Developm...
Dylan Miller 2003-03-12 Research and Developm...
Stephen Jiang 2005-02-04 Sales

Brian Welcker 2005-03-18 Sales

Michael Blythe 2005-07-01 Sales

Linda Mitchell 2005-07-01 Sales

Jillian Carson 2005-07-01 Sales

Garrett Vargas 2005-07-01 Sales

Tsvi Reiter 2005-07-01 Sales

Pamela Ansman-Walfe 2005-07-01 Sales

Shu Ito 2005-07-01 Sales

José Saraiva 2005-07-01 Sales

David Campbell 2005-07-01 Sales

Susan Eaton 2003-01-08 Shipping and Receiving

Figure 14. The query in Listing 38 provides the three longest-standing employees in each department.
When there are ties, it may produce more than three results.

Applying the same principle to finding the top five salespeople by year at AdventureWorks
(to match our VFP example) is a little more complicated because we have to compute sales
totals first. To make that work, we first use a CTE to compute those totals and then a
second CTE based on that result to add the ranks. (Note the comma between the two CTEs.)
Listing 39 (TopSalesPeopleByYear.sql in the materials for this session) shows the
complete query.

Listing 39. Finding the top five salepeople by year requires cascading CTEs, plus the OVER clause.

WITH TotalSalesBySalesPerson AS
(SELECT BusinessEntityID,
YEAR(OrderDate) AS nYear,
SUM(SubTotal) AS TotalSales
FROM Sales.SalesPerson
JOIN Sales.SalesOrderHeader
ON SalesPerson.BusinessEntityID = SalesOrderHeader.SalesPersonID
GROUP BY BusinessEntityID, YEAR(OrderDate)),

RankSalesPerson AS
(SELECT BusinessEntityID, nYear, TotalSales,
RANK() OVER
(PARTITION BY nYear
ORDER BY TotalSales DESC) AS nRank
FROM TotalSalesBySalesPerson)

SELECT FirstName, LastName, nYear, TotalSales
FROM RankSalesPerson
JOIN Person.Person
ON RankSalesPerson.BusinessEntityID = Person.BusinessEntityID
WHERE nRank <= 5

The first CTE, TotalSalesBySalesPerson, contains the ID for the salesperson, the year and
that person's total sales for the year. The second CTE, RankSalesPerson, adds rank within
the group to the data from TotalSalesByPerson. Finally, the main query keeps only the top
five in each and adds the actual name of the person. Figure 15 shows partial results.

Copyright 2014, Tamar E. Granor Page 32 of 51

Go Beyond VFP's SQL with SQL Server

___Firstl\lame LastName nYear TotalSales
Reiter 2005 1380707.4422
Jillian Carson 2005 1247434.4374

Linda Mitchell 2005 1143819.6543
Jose Saraiva 2005 1038949.5389
Shu lto 2005 8874988258
Jillian Carson 20068 38033858.3941
Linda Mitchell 2006 32349956953
Michael Blythe 2006 30771979242
Jae Pak 20068 25228359368
Tsvi Reiter 2006 24789851202
Jae Pak 2007 41724594445
Iinda Mitrhell 2007 41N22R0 1R22

Figure 15. These partial results show the top five salespeople by year.

It's worth noting the very cool feature demonstrated by this query. Not only can a query
have multiple CTEs, but CTEs later in the list can be based on previous CTEs. So
RankSalesPerson uses TotalSalesBySalesPerson in its FROM list.

The OVER clause has other uses, such as helping to de-dupe a list. In SQL 2012 and later, it’s
even more useful, with the ability to apply the function to a group of records based not only
on an expression, but based on position within a group.

Summarize aggregated data

As earlier sections of this paper show, SQL SELECT’s GROUP BY clause makes it easy to
aggregate data in a query. Just include the fields that specify the groups and some fields
using the aggregate functions (COUNT, SUM, AVG, MIN, MAX in VFP; SQL Server has those
and a few more).

For example, the query in Listing 40 (TotalsByCountryCity.PRG in the materials for this
session) fills a cursor with sales for each city for each month; Figure 16 shows partial
results.

Listing 40. This query computes total sales for each combination of country, city, year and month.

SELECT Country, City, ;
YEAR(OrderDate) AS OrderYear, MONTH(OrderDate) AS OrderMonth, ;
SUM(Quantity * OrderDetails.UnitPrice) AS nTotal ;
AVG(Quantity * OrderDetails.UnitPrice) AS nAvg, ;
COUNT(*) AS nCount ;
FROM Customers ;
JOIN Orders ;
ON Customers.CustomerID = Orders.CustomerID ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY OrderYear, OrderMonth, ;
Country, City ;
ORDER BY Country, City, ;
OrderYear, OrderMonth ;

Copyright 2014, Tamar E. Granor Page 33 of 51

Go Beyond VFP's SQL with SQL Server

INTO CURSOR csrCtyTotals
Country City Orderyear Ordermonth Ntotal Navg Ncount
s(=imbitt Buenos RAires 1557 1 31%.2000 159.6000 2
] Argentina Buenos Alires 1997 2 443.4000 221.7000 2
hrgenting Buenos Aires 15897 4 225.5000 75.1667 3
Rrgentina Buenos Rires 1997 5 110.0000 110.0000 1
Rrgentina Buenos RAires 1997 10 706.0000 235.3333 3
Ergenting Buenos Rires 1997 12 12.5000 12.5000 1
Argentina Buenos Alires 1998 1 1409.0000 352.2500 4
hrgentina Buenos Aires 1998 2 866.7000 173.3400 5
hrgenting Buenos Aires 1993 3 3645.8000 405.0889 9
Rrgentina Buenos RAires 1998 4 381.0000 §5.2500 4
Rustria iGraz 15%¢ 7 4483.4000 £40.4857 7
Bustria |Graz 1996 11 7511.8000 938.9750 8
Rustria [Graz 1996 12 5175.2000 575.0222 9
Rustria (Graz 1597 1 9515.4000 1185.4250 8

Figure 16. The query in Listing 40 computes the total sales for each city in each month.

You can do an analogous query using the SQL Server AdventureWorks 2008 database,

though it involves a lot more tables because the AdventureWorks database covers a wider
range of data than just sales. Listing 41 (SalesByCountryCity.SQL in the materials for this
session) shows the corresponding SQL Server query.

Listing 41. Aggregating the data with SQL Server’s AdventureWorks 2008 database is more verbose, but
contains the same elements.

SELECT Pe
Pe

YE

MO

SuU

AV

co

FROM Sa
JOIN
ON
JOIN
ON
JOIN
ON
JOIN
ON
JOIN
ON
JOIN
ON
JOIN
ON
GROUP B

rson.CountryRegion.Name AS Country,
rson.Address.City,
AR(OrderDate) AS nYear,
NTH(OrderDate) AS nMonth,
M(SubTotal) AS TotalSales
G(SubTotal) AS AvgSale,
UNT(*) AS NumSales
les.Customer
Person.Person
Customer.PersonID = Person.BusinessEntityID
Person.BusinessEntityAddress
Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
Person.Address
BusinessEntityAddress.AddressID = Address.AddressID
Person.StateProvince
Address.StateProvinceID = StateProvince.StateProvinceID
Person.CountryRegion
StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
Sales.SalesOrderHeader
Customer.CustomerID = SalesOrderHeader.CustomerID
Sales.SalesOrderDetail
SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
Y CountryRegion.Name, Address.City,

YEAR(OrderDate), MONTH(OrderDate))

Copyright 2014, Tamar E. Granor

Page 34 of 51

Go Beyond VFP's SQL with SQL Server

The rules for grouping are pretty simple. The field list contains two types of fields, those to
group on, and those that are being aggregated. In the VFP example, the fields to group on
are Country, City, OrderYear and OrderMonth, and the aggregated fields are nTotal, nAvg

and nCount. The SQL Server query has the same list, but some of the field names are

different. (Before VFP 8, you could include fields in the list that were neither grouped or
nor aggregated, but doing so could give you misleading results. This article on my website

explains the problem in detail: http://tinyurl.com/leydyqw.)

Computing group totals

What the basic query doesn'’t give you, though, is aggregation (that is, summaries) at any

level except the one you specify. That is, while you get the total, average and count for a

specific city in a specific month, you don’t get them for that city for the whole year, or for
that month for a whole country, and so on. Figure 17 shows what we’re looking for. At the
end of each year, a new record shows the total, average and count for that year. At the end
of each city, another record shows the city’s total, average and count and at the end of each
country, yet another record has country-wide results.

Country City Orderyear Ordermonth Ntotal Navg Ncount
Rustria .NULL. .NULL. .NULL. 1394%6.6300 877.3373 159
Belgium Bruxelles 1597 5 946.0000 315.3333 3
Belgium Bruxelles 1597 8 1434.0000 717.0000 2
Belgium Bruxelles 1597 12 3304.0000 1101.3333 3
Belgium Bruxelles 1597 .NULL. 5684.0000 710.5000 8
Belgium ;Bruxelles 1598 2 2950.5000 983.5000 3
Belgium Bruxelles 1598 3 1500.7000 375.1750 4
Belgium Bruxelles 1558 4 2585.3800 147.6500 2
Belgium Bruxelles 1598 .NULL. 4746.5800 527.35978 9
Belgium {Bruxelles .NULL. .NULL. 10430.5800 613.5635 17
Belgium :Charleroi 1596 7 3730.0000 1243.3333 3
Belgium Charleroi 1596 9 2708.8000 902.9333 3
Belgium Charleroi 1596 .NULL. 6438.8000 1073.1333 6
Belgium :Charleroi 1597 2 3891.0000 778.2000 3
Belgium Charleroi 1597 3 2484.1000 496.8200 5
Belgium :charleroi 1597 12 28.0000 28.0000 1
Belgium Charleroi 1597 .NULL. 6403.1000 582.1000 11
Belgium Charleroi 1598 1 56%3.0000 813.2857 7
Belgium :Charleroi 1598 2 1209.0000 302.2500 4
Belgium Charleroi 1598 3 2455.0000 613.7500 4
Belgium Charleroi 1598 4 2505.5000 357.5286 7
Belgium :Charleroi 1598 .NULL. 11862.5000 539.2045 22
Belgium Charleroi .NULL. .NULL. 24704.4000 633.4462 39
Belgium | .NULL. .NULL. .NULL. 35134.5800 163.4185 215

Figure 17. It can be useful to have group totals in the same cursor as the original data.

In VFP, there are three ways to get that data. One is to create a report and use totals and
report variables to compute and report that data, but of course, then you only have the data
as output, not in a VFP cursor.

The second choice is to use Xbase code to compute them based on the initial cursor. Listing
42 (WithGroupTotalsXbase.PRG in the materials for this session) shows how to do this; it
assumes you've already run the query in Listing 40. [t keeps running totals and counts for

Copyright 2014, Tamar E. Granor Page 35 of 51

http://tinyurl.com/leydyqw

Go Beyond VFP's SQL with SQL Server

each level: year, city, country and overall. Then, when one of those changes, it inserts the

appropriate record.

Listing 42. You can add subgroup aggregates by looping through the cursor.
LOCAL nYearTotal, nCityTotal, nCountryTotal, nGrandTotal
LOCAL nYearCnt, nCityCnt, nCountryCount, nGrandCount

LOCAL nCurYear, cCurCity, cCurCountry

* Create a new cursor to hold the results

SELECT * ;
FROM csrCtyTotals ;
WHERE .F. ;

INTO CURSOR csrWithGroupTotals READWRITE

SELECT csrCtyTotals

STORE @ TO nYearTotal, nCityTotal, nCountryTotal, nGrandTotal
STORE @ TO nYearCount, nCityCount, nCountryCount, nGrandCount
nCurYear = csrCtyTotals.OrderYear

cCurCity = csrCtyTotals.City

cCurCountry = csrCtyTotals.Country

SCAN

* First check for end of year,

* but could be same year and change of city

* or country.

IF csrCtyTotals.OrderYear <> m.nCurYear OR ;
NOT (csrCtyTotals.City == m.cCurCity) OR;
NOT (csrCtyTotals.Country == m.cCurCountry)

INSERT INTO csrWithGroupTotals ;

VALUES (m.cCurCountry, m.cCurCity, ;
m.nCurYear, .null., ;
m.nYearTotal, ;
m.nYearTotal/m.nYearCount, ;
m.nYearCount)

m.nCurYear = csrCtyTotals.OrderYear
STORE © TO m.nYearTotal, m.nYearCount

* Now check for change of city
IF NOT (csrCtyTotals.City == m.cCurCity) ;
OR NOT (csrCtyTotals.Country == m.cCurCountry)
INSERT INTO csrWithGroupTotals ;
VALUES (m.cCurCountry, ;
m.cCurCity, ;
.null., .null., ;
m.nCityTotal, ;
m.nCityTotal/m.nCityCount, ;
m.nCityCount)
m.cCurCity = csrCtyTotals.City
STORE © TO m.nCityTotal, m.nCityCount

* Now check for change of country
IF NOT (csrCtyTotals.Country == m.cCurCountry)
INSERT INTO csrWithGroupTotals ;

Copyright 2014, Tamar E. Granor

Page 36 of 51

Go Beyond VFP's SQL with SQL Server

VALUES (m.cCurCountry, .null., ,

.null., .null., ;
m.nCountryTotal, ;
m.nCountryTotal/m.nCountryCount, ;
m.nCountryCount)

m.cCurCountry = csrCtyTotals.Country

STORE © TO m.nCountryTotal, m.CountryCount

ENDIF
ENDIF
ENDIF

* Now handle current record
INSERT INTO csrWithGroupTotals ;
VALUES (csrCtyTotals.Country, ;
csrCtyTotals.City, ;
csrCtyTotals.OrderYear, ;
csrCtyTotals.OrderMonth, ;
csrCtyTotals.nTotal, ;
csrCtyTotals.nAvg, ;
csrCtyTotals.nCount)
nYearTotal = m.nYearTotal + csrCtyTotals.nTotal
nYearCount = m.nYearCount + csrCtyTotals.nCount
nCityTotal = m.nCityTotal + csrCtyTotals.nTotal
nCityCount = m.nCityCount + csrCtyTotals.nCount
nCountryTotal = m.nCountryTotal + csrCtyTotals.nTotal
nCountryCount = m.nCountryCount + csrCtyTotals.nCount
nGrandTotal = m.nGrandTotal + csrCtyTotals.nTotal
nGrandCount = m.nGrandCount + csrCtyTotals.nCount

ENDSCAN

* Now insert grand totals
INSERT INTO csrWithGroupTotals ;

VALUES (.null., .null., .null., .null., ;
m.nGrandTotal, ;
m.nGrandTotal/m.nGrandCount, ;
m.nGrandCount)

The third choice is to do a series of queries, each grouping on different levels and then
consolidate the results. Listing 43 shows this version of the code; as in the previous
example, it assumes you've already run the query that creates csrCtyTotals. This code
creates a cursor with each city’s annual totals, one with each city’s overall totals, one with
each country’s overall totals, and one containing the grand total. Then it uses UNION to
combine all the results into a single cursor. It’s included in the materials for this session as
WithGroupTotalsSQL.PRG.

Listing 43. You can add the yearly, city-wide and country-wide totals using SQL, as well.

* Now year totals by city

SELECT Country, City, OrderYear, ;
999 as OrderMonth, ;
SUM(nTotal) AS nTotal, ;
SUM(nTotal)/SUM(nCount) AS nAvg, ;

Copyright 2014, Tamar E. Granor Page 37 of 51

Go Beyond VFP's SQL with SQL Server

SUM(nCount) AS nCount ;
FROM csrCtyTotals ;

GROUP BY Country, City, OrderYear ;

INTO CURSOR csrYearTotals

* Now city totals

SELECT Country, City, ;
99999 AS OrderYear, ;
999 as OrderMonth, ;
SUM(nTotal) AS nTotal, ;

SUM(nTotal)/SUM(nCount) AS nAvg, ;

SUM(nCount) AS nCount ;
FROM csrCtyTotals ;
GROUP BY Country, City ;
INTO CURSOR csrCityTotals

* Now country totals
SELECT Country, ;

REPLICATE('Z', 15) AS City, ;

99999 AS OrderYear, ;
999 as OrderMonth, ;
SUM(nTotal) AS nTotal, ;

SUM(nTotal)/SUM(nCount) AS nAvg, ;

SUM(nCount) AS nCount ;
FROM csrCtyTotals ;
GROUP BY Country ;
INTO CURSOR csrCountryTotals

* Now grand total

SELECT REPLICATE('Z', 15) AS Country, ;
REPLICATE('Z', 15) AS City, ;

99999 AS OrderYear, ;
999 as OrderMonth, ;
SUM(nTotal) AS nTotal, ;

SUM(nTotal)/SUM(nCount) AS nAvg, ;

SUM(nCount) AS nCount ;
FROM csrCtyTotals ;
INTO CURSOR csrGrandTotal

* Create one cursor
SELECT * ;

FROM csrCtyTotals ;
UNION ALL ;
SELECT * ;

FROM csrYearTotals ;
UNION ALL ;
SELECT * ;

FROM csrCityTotals ;
UNION ALL ;
SELECT * ;

FROM csrCountryTotals ;
UNION ALL ;
SELECT * ;

FROM csrGrandTotal ;

ORDER BY Country, City, ;

Copyright 2014, Tamar E. Granor

Page 38 of 51

Go Beyond VFP's SQL with SQL Server

OrderYear, OrderMonth ;
INTO CURSOR csrWithGroupTotals READWRITE

UPDATE csriWithGroupTotals ;
SET OrderMonth = .null. ;
WHERE OrderMonth = 999

UPDATE csriWithGroupTotals ;
SET OrderYear = .null. ;
WHERE OrderYear = 99999

UPDATE csriWithGroupTotals ;
SET City = .null. ;
WHERE City = REPLICATE('Z', 15)

UPDATE csriWithGroupTotals ;
SET Country = .null. ;
WHERE Country = REPLICATE('Z', 15)

There’s one trick in this code. If we put null into the fields that are irrelevant for a given
total, when we sort the result, the totals appear above rather than below the records they
represent. Instead, we put an impossible value that sorts to the bottom initially, then
change it to null after ordering the data.

Introducing ROLLUP

Of course, the reason for showing all this code is that SQL Server makes it much easier. The
ROLLUP clause lets you compute these summaries as part of the original query.

ROLLUP appears in the GROUP BY clause, looking like a function around the fields you
apply it to. Listing 44 shows the SQL Server equivalent of Listing 42 and Listing 43; the
code is included in the materials for this session as SalesByCountryCityRollup.SQL. Figure
18 shows partial results.

Listing 44. SQL Server’s ROLLUP clause computes the subgroup aggregates as part of the query.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,

COUNT (SubTotal) AS NumSales

FROM Sales.Customer

JOIN Person.Person

ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress

ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address

ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince

ON Address.StateProvinceID = StateProvince.StateProvincelD
JOIN Person.CountryRegion

ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader

Copyright 2014, Tamar E. Granor Page 39 of 51

Go Beyond VFP's SQL with SQL Server

ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY ROLLUP(CountryRegion.Name, Address.City,
YEAR(OrderDate), MONTH(OrderDate))

Country City nYear nMonth TotalSales AvgSale NumSales
Australia Caloundra 2007 NULL 2034781.. 12257718 166
Australia Caloundra 2008 1 19240.68 962.034 20
Australa Caloundra 2008 2 3124821 801.1848 39
Australia Caloundra 2008 3 50989.52 1456.8434 35
Australia Caloundra 2008 4 50096438 11927733 42
Australia Caloundra 2008 5 34395.28 1433.1366 24
Australia Caloundra 2008 6 2524312 901.54 28
Australia Caloundra 2008 7 49428 61.785 8
Australia Caloundra 2008 NULL 211705.57 1080.1304 196
Australia Caloundra NU... NULL 527130.8.. 1301.5576 405
Australia Cloverdale 2005 8 3399.99 3399.99 1
Australia Cloverdale 2005 10 337499 337499 1
Australia Cloverdale 2005 11 3578.27 3578.27 1
Australia Cloverdale 2005 12 6853.26 3476.63 2
Australia Cloverdale 2005 NULL 17306.51 3461.302 5

Figure 18. In SQL Server, it's easy to compute aggregates for subgroups.

The order of the fields in the ROLLUP clause matters. The last one listed is summarized
first. In Figure 18, you can see that the first level of summary is the whole year for a given
city and country, because the month column is listed last. If you change the order in the
ROLLUP clause to put the city last, as in Listing 45, the first summary level is a single
month (and year), across all cities in a country; Figure 19 shows partial results.

Listing 45. The order of the fields in the ROLLUP clause matters. Changing the order changes what
summaries you get.

GROUP BY ROLLUP(CountryRegion.Name, YEAR(OrderDate),
MONTH(OrderDate), Address.City)

Country City nYear nMonth TotalSales AvgSale NumSales
Australia Townsville 2008 7 66.11 13.222]
Australia Warrmambool 2008 7 660.20 73.395% 9
Australia Wollongong 2008 7 367.84 91.96 4
Australia NULL 2008 7 23555.63 63.1518 373
Australia NULL 2008 NULL 6786807.30 1004.4113 6757
Australia NULL NU... NULL 163228659.. 1223.1292 13345
Canada Haney 2005 7 3578.27 3578.27 1
Canada Metchosin 2005 7 3578.27 3578.27 1
Canada N Vancouver 2003 7 387827 3978.27 1
Canada Newton 2005 7 3374.99 3374.99 1
Canada Royal Oak 2005 7 3578.27 3578.27 1
Canada Shawnee 2005 7 4277.3682 21386841 2
Canada NULL 2005 7 21965.4382 31379197 7
Canada Burnaby 2005 8 3578.27 3578.27 1

Figure 19. When you change the order of fields in the ROLLUP clause, you get a different set of summaries.

The ROLLUP clause doesn’t have to surround all the fields in the GROUP BY, only the ones
for which you want summaries. So, if you don’t need a grand total in the previous example,

Copyright 2014, Tamar E. Granor Page 40 of 51

Go Beyond VFP's SQL with SQL Server

you can put CountryRegion.Name before the ROLLUP clause, as in Listing 46. Similarly, if
you want summaries only for each city and year, put both CountryRegion.Name and
Address.City before the ROLLUP clause. You can also put fields after the ROLLUP clause, but
in my testing, the results aren’t terribly useful.

Listing 46. Not all fields have to be included in ROLLUP, just those that should be summarized. With this
GROUP BY clause, the results won'’t include grand totals because we’re not rolling up the country.

GROUP BY CountryRegion.Name,
ROLLUP(Address.City,
YEAR(OrderDate),
MONTH(OrderDate))

Note also that when ROLLUP is involved, you use the source field names, not the result field
names in the GROUP BY clause.

ROLLUP with cross-products

You can use two ROLLUP clauses in the same GROUP BY. Doing so gives you the cross-
product of the two groups. That is, you get the results you'd get from either ROLLUP, but
you also get combinations of the two.

For example, if you change the GROUP BY clause in Listing 44 to the one shown in Listing
47, you get all the rows you had before, but you also get summaries for each country for
each month and year, as well as overall summaries for each month and for each year.
Figure 20 shows part of the results. The complete query is included in the materials for
this session as SalesByCountryCityRollupXProd.SQL.

Listing 47. You can use two ROLLUP clauses to generate the cross-product of the two sets of fields.

GROUP BY ROLLUP(YEAR(OrderDate), MONTH(OrderDate)),
ROLLUP(CountryRegion.Name, Address.City)

Country City nYear nMonth TotalSales AvgSale NumSales
United King... NULL 2008 6 7704113 1137.6883 683
United King... NULL 2008 7 1194284 60.6235 197

United King... NULL 2008 NULL 3403936.78 ©951.08589 3579
United States ~ NULL 2008 1241090.58 783.0224 1585

1

United States ~ NULL 2008 2 141764454 857.6192 1653
United States ~ NULL 2008 3 1407198.05 831.6773 1692
United States ~ NULL 2008 4 1457717.98 807.1528 1806
United States ~ NULL 2008 5 2066050.29 979.1707 2110
United States ~ NULL 2008 6 1926201.99 965.031 1996
United States NULL 2008 7 52011.40 63.2742 §22
United States ~ NULL 2008 NULL 9567914.84 820.2044 11664
NULL NULL 2008 NULL 27419405.. 8489505 32298
NULL NULL 2006 9 350466.9... 1770.0353 198
NULL NULL 2007 4 507965.2... 1716.0985 296
NULL NULL 2005 10 513329.474 3188.3818 161

Figure 20. Using the GROUP BY clause in Listing 47 with the earlier query provides summaries for not just
each city by year, each city overall, and each country, but also for each country by month and by year, and for
each month and each year.

Copyright 2014, Tamar E. Granor Page 41 of 51

Go Beyond VFP's SQL with SQL Server

As with a single ROLLUP clause, the order in which you list the ROLLUP clauses and the
order of the fields within them determines both what summaries you get and, if you don’t
use an ORDER BY clause, the order of the records in the result.

Adding descriptions to summaries

In all the examples so far, the null value indicates which field is being summarized. But you
can put descriptive data in those fields instead.

Wrap the columns being rolled up with ISNULL() and specify the string you want in the
summary rows as the alternate. (ISNULL() in SQL Server behaves like VFP’s NVL() function,
returning the first parameter unless it’s null, in which case it returns the second
parameter.) Listing 48 (SalesByCountryCityRollupWDesc.SQL in the materials for this
session) shows the same query as Listing 44, except that each of the non-aggregated fields
includes a description to use when it’s summarized. Doing so requires changing the year
and month columns to character, of course. Figure 21 shows a chunk of the results.

Listing 48. Rather than having null indicate a summary row, use the description you want.

SELECT ISNULL(Person.CountryRegion.Name, 'All countries') AS Country,
ISNULL(Person.Address.City, 'All cities') AS City,
ISNULL(STR(YEAR(OrderDate)), 'All years') AS OrderYear,
ISNULL(STR(MONTH(OrderDate)), 'All months') AS OrderMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,
COUNT(SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY ROLLUP(CountryRegion.Name, Address.City,
YEAR(OrderDate), MONTH(OrderDate))

Copyright 2014, Tamar E. Granor Page 42 of 51

Go Beyond VFP's SQL with SQL Server

Country City OrderY... OrderMo... TotalSales AvgSale NumSales
Australia Wollongong 2008 2 29543.26 1477.163 20
Australia Wollongong 2008 3 46330.36 1494.5277 31
Australia Wollongong 2008 4 42357.88 1033.119 41
Australia Wollongong 2008 5 39493.51 1128.386 35
Australia Wollongong 2008 6 64000.30 1280.006 50
Australia Wollongong 2008 7 367.84 91.96 4
Australia Wollongong 2008 Allmonths 268554.13 1272.7683 211
Australia Wollongong Allyears Allmonths 6182574... 1504.2761 411
Australia All cities Allyears Allmonths 16322659... 1223.1292 13345
Canada Burnaby 2005 8 3578.27 3578.27 1
Canada Burnaby 2005 Allmonths 3578.27 3578.27 1
Canada Burnaby 2006 3 3578.27 357827 1

1

Canada Burnaby 2008 5 3578.27

3578.27

Figure 21. Including descriptions instead of null makes it easier to understand the summary lines.

Introducing CUBE

ROLLUP is limited to summarizing based only on the hierarchy you specify. For example,
the query in Listing 44 doesn’t give summaries for each country for each year. While you
can get that result with ROLLUP, you have to give up some other summaries to do so.

If you want to summarize based on every possible combination of values, use CUBE rather
than ROLLUP. The query in Listing 49 is identical to the one in Listing 44, except that the
GROUP BY clause specifies CUBE rather than ROLLUP. Figure 22 shows part of the results.
The items at the top of the grid include summaries you wouldn’t get with ROLLUP, such as
the summary for all locations in all Decembers about halfway down and the summary for
Australia for all of 2005 in the last row shown. This query is included in the materials for
this session as SalesByCountryCityCubeNoOrder.sql.

Listing 49. Use the CUBE clause to get summaries for all combinations of values.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY CUBE(CountryRegion.Name, Address.City,
YEAR(OrderDate), MONTH(OrderDate))

Copyright 2014, Tamar E. Granor Page 43 of 51

Go Beyond VFP's SQL with SQL Server

Country City nYear nMonth TotalSales AvgSale NumSales
United Kingdom Waoalston 2007 12 16936.33 1129.0886 15
NULL Waoalston 2007 12 16936.33 1129.0886 15
United States Yakima 2007 12 22785.39 875.7073 26
NULL Yakima 2007 12 22768.39 872.7073 26
United Kingdom York 2007 12 50720.73 1334.756 38
NULL Yoark 2007 12 50720.73 1334.756 38
NULL NULL 2007 12 4889275... 927.3661 5283
NULL NULL NULL 12 6233117... 1065.6723 5349
NULL NULL NULL NULL 5927376... 980.3961 60459
Australia NULL 2005 7 209652.... 33814984 62
Australia NULL 2005 8 2225380 32726219 68
Australia NULL 2005 9 173993.... 3346.029 52
Australia NULL 2005 10 2179930 3353.7443 65
Australia NULL 2005 11 210683.... 33441835 63
Australia NULL 2005 12 2741850 32641136 &4

Figure 22. When you specify CUBE, every possible combination of values is summarized.

However, some of the results of this query are misleading. The first few rows in Figure 22
should give you a clue as to the problem. We’'re summarizing by name of a city for a month.
What if we have multiple cities with the same name? In fact, this data set contains several
repeated city names, among them Birmingham. Figure 23 shows that when both
Birminghams have data for a given month, we get a total for that month that covers both
cities, which is meaningless.

Country City nYear nMonth TotalSales AvgSale MNumSales
United Kingdom Birmingham NULL 6 9752 32 543 4622 18
NULL Birmingham NULL 6 9752.32 543.4622 18
United Kingdom Birmingham NULL 7 81589.08 1169.87 7
United States NULL 7 35.00 35.00 1
NULL Birmingham NULL 7 5224.09 1028.0112 8
United Kingdom Birmingham NULL 8 1714.0957 4285239 4
NULL Birmingham NULL & 1714.0957 4285239 4
United Kingdom Birmingham NULL 9 7298.882% 104286975 7
NULL Birmingham NULL 9 7298.8825 10426975 7
United Kingdom Birmingham ~ NULL 10 13124.3... 1009.5621 13
NULL Birmingham NULL 10 13124.3... 1009.5621 13
United Kingdom Birmingham NULL 11 6083.63 6759588 9
United States Birmingham NULL 11 2.29 2.29 1
NULL Birmingham NULL 11 6085.92 608.592 10
United Kingdom Birmingham ~ NULL 12 17644.17 1604.0154 11

Figure 23. Some of the summarized results can be misleading if fields are dependent on each other. Here, we
get totals for a given month for both Birminghams.

The way to avoid the problem is to group fields together if their data is linked. You do that
by putting parentheses around the fields to be grouped. Listing 50 shows the same query,
but with the Country and City fields grouped together. (It also has an ORDER BY clause to
sort the results into a useful order.) It’s included in the materials for this session as
SalesByCountryCityCubeCombined.sql. Figure 24 shows partial results; note that there are
no totals where Name is null, but City is not.

Copyright 2014, Tamar E. Granor Page 44 of 51

Go Beyond VFP's SQL with SQL Server

Listing 50. Group fields with parentheses in the CUBE clause to have them treated as a single dimension.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY CUBE((CountryRegion.Name, Address.City),
YEAR(OrderDate),
MONTH(OrderDate))
ORDER BY Country, City, nYear, nMonth

Country City nYear nMonth TotalSales AvgSale NumSales
NULL NULL 2008 6 5534993.75 996.7573 5553
NULL NULL 2008 7 137184.87 62.0465 2211
Australia Bendigo NULL NULL 5554319893 1402.606 396
Australia Bendigo NULL 1 45717.8121 1576.4762 29
Australia Bendigo NULL 2 35863.8521 1434.554 25
Australia Bendigo NULL 3 47283.4582 1432.832 33
Australia Bendigo NULL 4 63837.0056 1329.9376 48
Australia Bendigo NULL 5 61997.1378 1265.2477 49
Australia Bendigo NULL 6 63523.672 1556.6749 41
Australia Bendigo NULL 7 605858.16 1731.0902 35
Australia Bendigo NULL 8 28585.1242 1242.8314 23
Australia Bendigo NULL 8 23499.03 1382.29%8 17
Australia Bendigo NULL 10 52875.3221 14298.0627 37
Australia Bendigo NULL 11 34616.54 1081.7668 32
Australia Bendigo NULL 12 36744 8752 1360.9213 27
Australia Bendigo 2005 NULL 41972.84 3497.7366 12
Australia Bendigo 2005 7 20909.78 34849633 6
Australia Bendigo 2005 8 3578.27 3578.27 1
Australia Bendigo 2005 10 6953.26 3476.63 2

Figure 24. With country and city grouped, the results don’t have totals for a city without the associated
country.

If you don’t want summaries for each month across the years (that is, for example, for all
Aprils), you can group year and month in the CUBE clause, as well, as in Listing 51. A query

Copyright 2014, Tamar E. Granor Page 45 of 51

Go Beyond VFP's SQL with SQL Server

that uses this CUBE clause is included in the materials for this session as
SalesByCountryCityCubeCombinedBoth.sql.

Listing 51. You can have multiple groups of fields within the CUBE clause.

GROUP BY CUBE((CountryRegion.Name, Address.City),
(YEAR(OrderDate), MONTH(OrderDate)))

Fine tuning the set of summaries

ROLLUP and CUBE take care of very common scenarios, but each is restricted in which set
of summaries you can get, and each includes the basic aggregated data in the result. What if
you want a different set of summaries? What if you want just the summaries without the
basic aggregated data?

In our example, suppose you want to see the summary for each month across all years and
locations, the summary for each year across all months and locations, and the summary for
each location across all months and years? You could get those results by doing a separate
query for each and then combining them with UNION ALL, as in Listing 52
(SummariesUnion.SQL in the materials for this session); Figure 25 shows partial results.

Listing 52. You can retrieve just the summaries using UNION ALL.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
null AS nYear, null AS nMonth,
SUM(SubTotal) AS TotalSales,
AVG(SubTotal) AS AvgSale,
COUNT(SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY Person.CountryRegion.Name, City
UNION ALL
SELECT NULL AS Country, NULL City,
NULL AS nYear, MONTH(OrderDate) AS nMonth,
SUM(SubTotal) AS TotalSales,
AVG(SubTotal) AS AvgSale,
COUNT(SubTotal) AS NumSales
FROM Sales.SalesOrderHeader
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

Copyright 2014, Tamar E. Granor Page 46 of 51

Go Beyond VFP's SQL with SQL Server

GROUP BY MONTH(OrderDate)
UNION ALL
SELECT NULL AS Country, NULL AS City,
YEAR(OrderDate) AS nYear, NULL AS nMonth,
SUM(SubTotal) AS TotalSales,
AVG(SubTotal) AS AvgSale,
COUNT(SubTotal) AS NumSales
FROM Sales.SalesOrderHeader
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY YEAR(OrderDate)
ORDER BY Country, City, nYear, nMonth

Country City nYear nMonth TotalSales AvgSale NumSales
NULL NULL NULL 7 228486423.7421 27584 9841 8283
NULL NULL NULL 8 346541500.3052 29440.2769 11771
NULL NULL NULL 9 314385828.5747 29177.339 10775
NULL NULL NULL 10 166185042.8543 20133.8796 8254
NULL NULL NULL 11 271459474 9601 24909.1094 10898
NULL NULL NULL 12 235620076.8434 20664.8023 11402
NULL MULL 2005 NULL 141944504.3041 27556.6888 5191
NULL NULL 2006 NULL 779150362.1894 40259.9267 19353
NULL NULL 2007 NULL 1169638118.0044 228279976 51237
NULL NULL 2008 NULL 5057374721795 11096.5743 45576
Australia Bendigo NULL NULL 555431.9893 1402.606 396
Australia Brisbane NULL NULL 5460144579 1403.6361 389
Australia Caloundra NULL NULL 527130.8302 1301.5576 405
Australia Cloverdale NULL NULL 3843074948 1311.6296 293

Figure 25. Sometimes, you want only the summaries, not the original aggregations.

That’s a lot of code. SQL Server offers an alternative way to do this, using a feature called
grouping sets. They let you fine tune which summaries you get. With grouping sets, you
explicitly tell the query which combinations to summarize. The grouping sets equivalent of
the UNIONed query in Listing 52 is shown in Listing 53 (included in the materials for this
session as SummariesGroupingSets.SQL).

Listing 53. GROUPING SETS let you ask for the specific set of summaries you want.

SELECT Person.CountryRegion.Name AS Country, Person.Address.City,
YEAR(OrderDate) AS nYear, MONTH(OrderDate) AS nMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,
COUNT(SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvinceID
JOIN Person.CountryRegion

Copyright 2014, Tamar E. Granor Page 47 of 51

Go Beyond VFP's SQL with SQL Server

ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID
GROUP BY GROUPING SETS ((CountryRegion.Name, Address.City),
(YEAR(OrderDate)),
(MONTH(OrderDate)))
ORDER BY Country, City, YEAR(OrderDate), MONTH(OrderDate)

The GROUP BY clause indicates three grouping sets here, each enclosed in parentheses:
(CountryRegion.Name, Address.City) which says to show totals for each city and country
combination, across all years and months; (YEAR(OrderDate)), which asks for totals for
each year, across all locations and months; and (MONTH(OrderDate)), which requests
totals for each month, across all locations and years. The parentheses are required in the
first case, to show that city and country are to be treated as a set. While they’re not
required for the other two items, they do make clear that each is to be handled separately.

ROLLUP and CUBE are actually special cases of grouping sets. You can use grouping sets to
get the same results, though it actually makes the code longer. Listing 54 shows the GROUP
BY clause for the grouping sets equivalent of the ROLLUP query in Listing 44. (The
complete version of this query is included in the materials for this session as
GroupingSetsRollupEquiv.sql.)

Listing 54. You can use GROUPING SETS instead of ROLLUP, but it calls for more code in the GROUP BY
clause.

GROUP BY GROUPING SETS (
(CountryRegion.Name, Address.City, YEAR(OrderDate), MONTH(OrderDate)),
(CountryRegion.Name, Address.City, YEAR(OrderDate)),
(CountryRegion.Name, Address.City),
(CountryRegion.Name),

0)

There are five grouping sets shown. The first set, which includes all four non-aggregated
fields is the equivalent of simply doing GROUP BY with that list. It does the aggregation, but
no summaries.

Each grouping set after that contains one fewer field than the preceding one, until the last
contains no field, indicating that the summary should be computed over the entire data set.
Looking at this GROUP BY clause actually helps to clarify what ROLLUP does. It aggregates
on all the fields listed, then one by one, removes fields from the right and aggregates again.

For the equivalent of CUBE, the GROUPING SETS list is even more unwieldy, but again it
sheds light on what’s going on when you use CUBE. Listing 55 shows the GROUP BY clause
for a query (GroupingSetsCubeCombinedEquiv.sql in the materials for this session) that
produces the same results as Listing 50.

Copyright 2014, Tamar E. Granor Page 48 of 51

Go Beyond VFP's SQL with SQL Server

Listing 55. Replacing CUBE with GROUPING SETS lets you see all the cases that CUBE handles.

GROUP BY GROUPING SETS(
(CountryRegion.Name, Address.City, YEAR(OrderDate), MONTH(OrderDate)),
(CountryRegion.Name, Address.City, YEAR(OrderDate)),
(CountryRegion.Name, Address.City, MONTH(OrderDate)),
(CountryRegion.Name, Address.City),
(YEAR(OrderDate), MONTH(OrderDate)),
(YEAR(OrderDate)),
(MONTH(OrderDate)),

0))

Note that unlike the CUBE query, you don’t have to (in fact, can’t) enclose the country/city
pair in parentheses here. You just omit any grouping sets that include one without the
other.

Of course, there’s no reason to write out the long version when you can use ROLLUP or
CUBE. But when you need something else, having grouping sets available is a big help.

As Listing 53 demonstrates, grouping sets also let you get summaries without including
the basic aggregated data. Just omit the grouping set that lists all the fields on which to
aggregate. Be aware, though, that as with any other GROUP BY clause, every field in the
field list that doesn’t include an aggregate function must appear somewhere in the list of
grouping sets.

Listing 56 shows the GROUP BY clause for a query that's equivalent to Listing 50, but
without the first grouping set, so that only the summaries are included. Figure 26 shows
partial results; if you compare to Figure 24, you can see that the rows where nothing is
null have been eliminated. This query is included as GroupingSetsWithoutAggregates.sql in
the materials for this session.

Listing 56. By omitting the grouping set that includes all non-aggregated fields, you can get just the
summaries you want without the base aggregated data.

GROUP BY GROUPING SETS(
(CountryRegion.Name, Address.City, YEAR(OrderDate)),
(CountryRegion.Name, Address.City, MONTH(OrderDate)),
(CountryRegion.Name, Address.City),
(YEAR(OrderDate), MONTH(OrderDate)),
(YEAR(OrderDate)),
(MONTH(OrderDate)),

)

Copyright 2014, Tamar E. Granor Page 49 of 51

Go Beyond VFP's SQL with SQL Server

Country City nYear nMonth TotalSales AvgSale NumSales
NULL NULL 2008 6 55349983.75 996.7573 5553
NULL NULL 2008 7 137184.87 62.0465 2211
Australia Bendigo NULL NULL 555431.9893 1402.606 396
Australia Bendigo NULL 1 45717.8121 1576.4762 29
Australia Bendigo NULL 2 35863.8521 1434.554 25
Australia Bendigo NULL 3 47283.4582 1432.832 33
Australia Bendigo NULL 4 63837.0056 1329.9376 48
Australia Bendigo NULL 5 61997.1378 1265.2477 49
Australia Bendigo NULL 6 B63823.672 1556.6749 41
Australia Bendigo NULL 7 60585.16 1731.0902 35
Australia Bendigo NULL 8 28585.1242 1242.8314 23
Australia Bendigo NULL 9@ 23499.03 1382.2958 17
Australia Bendigo NULL 10 52875.3221 1429.0627 37
Australia Bendigo NULL 11 34616.54 1081.7668 32
Australia Bendigo NULL 12 36744 .8752 1360.9213 27
Australia Bendigo 2005 NULL 41972.84 3497.7366 12
Australia Bendigo 2006 NULL 68205.8315 243592256 28

Australia Bendigo 2007 NULL 211159.4078 1311.5491 161

Figure 26. When you exclude the grouping set that contains all aggregated fields, the result contains only the
summaries.

Make it pretty

As with the ROLLUP clause, for both CUBE and GROUPING SETS, you can make the results
easier to understand by using ISNULL() to replace the nulls with meaningful descriptions.

Listing 57 shows the query from Listing 50 with the descriptions added. Figure 27 shows
partial results. The query is included in the materials for this session as
SalesByCountryCityCubeCombinedWDesc.sql.

Listing 57. You can replace the nulls that indicate summary records with descriptions.

SELECT ISNULL(Person.CountryRegion.Name, 'All countries') AS Country,
ISNULL(Person.Address.City, 'All cities') AS City,
ISNULL(STR(YEAR(OrderDate)), 'All years') AS cYear,
ISNULL(STR(MONTH(OrderDate)), 'All months') AS cMonth,
SUM(SubTotal) AS TotalSales,

AVG(SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID = Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID = BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID = Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID = StateProvince.StateProvincelD
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode = CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID = SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail

Copyright 2014, Tamar E. Granor Page 50 of 51

Go Beyond VFP's SQL with SQL Server

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

GROUP BY CUBE((CountryRegion.Name, Address.City),
YEAR(OrderDate),

Country

All countries
All countries
All countries
All countries
All countries
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia

City

All cities
All cities
All cities
All cities
All cities.
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo
Bendigo

MONTH(OrderDate))
ORDER BY Country, City, cYear, cMonth

cYear

All years

All years

All years

All years

All years
2005
2005
2005
2005
2005
2005
2008
2006
2006
2006

cMonth
9
10
11
12
All months
7
9
10
11
12
All months
1

2
3
4

TotalSales
3649551.8024
40146667773
4190634.2945
62331174491
59273769.3 .
20909.78
3578.27
6953.26
357827
6953.26
41972 84
10734 .81
10734 .81
a578.27
3578.27

AvgSale
8625742
884.6775
923.0472
1065.6723
980.3961
3484 9633
3578.27
3476.63
3578.27
3476.63
3497.7366
357827
3578.27
3a578.27
3578.27

NumSales
4231
4538
4540
5849
60459

6
1
2
1
2
1
3
3
1
1

Figure 27. You can use ISNULL() to substitute descriptions for nulls, and make the results easier to

comprehend.

What about VFP?

I showed how to do the equivalent of ROLLUP in VFP. The second approach shown there,
using a separate query for each summary you want, and then combining the results with
UNION, works for CUBE and GROUPING SETS, as well. Of course, the resulting code is fairly
opaque. That’s why having these shortcuts in SQL Server is so nice.

Keep on learning

While [read articles and examples of each of these features to learn them, it was trying
different variations that really helped me understand them. I strongly recommend you
start with the examples here and then try building analogous code against your own data,
or modifying this code to see the results.

Beyond that, the features in this paper are only a subset of those T-SQL offers that aren’t
part of VFP’s SQL. If you're really trying to learn more T-SQL, find a SQL Q&A forum and

start reading. I've learned a lot reading the one at www.tek-tips.com;
http://www.sqlservercentral.com/ has articles and Q&A forums. There are lots of others,

as well.

Copyright 2014, Tamar E. Granor

Page 51 of 51

http://www.tek-tips.com/
http://www.sqlservercentral.com/

